

(CBCS)/ elective course system AQAR 2021-22- QnM: -1.2.1

Additional Information for QnM 1.2.1-

Number of Programmes in which Choice Based Credit System (CBCS)/ elective course system has been implemented

File description:Programmers adopting CBCS

The syllabus of Electronics Engineering is shown here as a sample. Due to size constraints of file size, the syllabus of remaining programs, is uploaded on the following link: https://tinyurl.com/mtbrsrs5

AC- 29/06/2021 Item No. – 6.13

UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Electronics Engineering

Second Year with Effect from AY2020-21 Third Year with Effect from AY2021-22 Final Year with Effect from AY 2022-23

(REV-2019'C' Scheme) from Academic Year2019–20

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

AC – 29/06/2021 Item No. – 6.13

UNIVERSITY OF MUMBAI

Sr. No.	Heading	Particulars
1	Title of the Course	Third Year BE in Electronics Engineering
2	Eligibility for Admission	Second Year Engineering passed in line with the Ordinance 0.6243
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6243
5	No. of Years / Semesters	8 Semesters
6	Level	Certificate/Diploma/UG/ PG (Strike out which is not applicable)
7	Pattern	Semester/ Yearly (Strike out which is not applicable)
8	Status	Revised/ New (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2021-2022

Date:

Signature:

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai **Dr. Anuradha Muzumdar** Dean Faculty of Science and Technology University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering)of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc. There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai **Dr Anuradha Muzumdar** Dean Faculty of Science and Technology University of Mumbai

Incorporation and implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C ' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai **Dr Anuradha Muzumdar** Dean Faculty of Science and Technology University of Mumbai

Preface

Technical education in the country is undergoing a paradigm shift in current days. Think tank at national level are deliberating on the issues, which are of utmost importance and posed challenge to all the spheres of technical education. Eventually, impact of these developments was visible and as well adopted on bigger scale by almost all universities across the country. These are primarily an adoption of CBCS (Choice base Credit System) and OBE (Outcome based Education) with student centric and learning centric approach. Education sector in the country, as well, facing critical challenges, such as, the quality of graduates, employability, basic skills, ability to take challenges, work ability in the fields, adoption to the situation, leadership qualities, communication skills and ethical behavior. On other hand, the aspirants for admission to engineering programs are on decline over the years. An overall admission status across the country is almost 50%; posing threat with more than half the vacancies in various colleges and make their survival difficult. In light of these, an All India Council for Technical Education (AICTE), the national regulator, took initiatives and enforced certain policies for betterment, in timely manner. Few of them are highlighted here, these are design of model curriculum for all prevailing streams, mandatory induction program for new entrants, introduction of skill based and inter/cross discipline courses, mandatory and so on.

To keep the pace with these developments in Technical education, it is mandatory for the Institutes & Universities to adopt these initiatives in phased manner, either partially or in toto. Hence, the ongoing curriculum revision process has a crucial role to play. The BoS of Electronics Engineering under the faculty of Science & Technology, under the gamut of Mumbai University has initiated a step towards adoption of these initiatives. We, the members of Electronics Engineering Board of Studies of Mumbai University feel privileged to present the revised version of curriculum for Electronics Engineering program to be implemented from academic year 2020-21. Some of the highlights of the revision are;

- i. Curriculum has been framed with reduced credits and weekly contact hours, thereby providing free slots to the students to brain storm, debate, explore and apply the engineering principles. The leisure provided through this revision shall favour to inculcate innovation and research attitude amongst the students.
- ii. New skill based courses have been incorporated in curriculum keeping in view AICTE model curriculum.
- iii. Skill based Lab courses have been introduced, which shall change the thought process and enhance the programming skills and logical thinking of the students
- iv. Mini-project with assigned credits shall provide an opportunity to work in a group, balancing the group dynamics, develop leadership qualities, facilitate decision making and enhance problem solving ability with focus towards socio-economic development of the country. In addition, it shall be direct application of theoretical knowledge in practice, thereby, nurture learners to become industry ready and enlighten students for Research, Innovation and Entrepreneurship thereby to nurture start-up ecosystem with better means.
- v. <u>U</u>sage of ICT through NPTEL/SWAYAM and other Digital initiatives of Govt. of India shall be encouraged, facilitating the students for self-learning and achieve the Graduate Attribute (GA) specified by National Board of accreditation (NBA) i.e. lifelong learning.

Thus, this revision of curriculum aimed at creating deep impact on the teaching learning methodology to be adopted by affiliated Institutes, thereby nurturing the student fraternity in multifaceted directions and create competent technical manpower with legitimate skills. In times to come, these graduates shall shoulder the responsibilities of proliferation of future technologies and support in a big way for 'Make in India' initiative, a reality. In the process,

BoS, Electronics Engineering got whole hearted support from all stakeholders including faculty, Heads of department of affiliating institutes, experts faculty who detailed out the course contents, alumni, industry experts and university official providing all procedural support time to time. We put on record their involvement and sincerely thank one and all for contribution and support extended for this noble cause.

Sr. No.	Name	Designation	Sr. No.	Name	Designation
1	Dr. R. N. Awale	Chairman	5	Dr. Rajani Mangala	Member
2	Dr. Jyothi Digge	Member	6	Dr. Vikas Gupta	Member
3	Dr. V. A. Vyawahare	Member	7	Dr. D. J. Pete	Member
4	Dr. Srija Unnikrishnan	Member	8	Dr. Vivek Agarwal	Member

Boards of Studies in Electronics Engineering

Program Structure for Third Year Electronics Engineering UNIVERSITY OF MUMBAI

(With Effect from 2021-2022)

Course Code	Course Name	Teac (Cor	hing Sch itact Ho	neme urs)	Credits Assigned			
Code		ТН	PR	Tut	ТН	Pract	Tut	Total
ELC501	Principles of Control System	3			3			3
ELC502	Digital Signal Processing	3			3			3
ELC503	Linear Integrated Circuits	3			3			3
ELC504	Digital Communication	3			3			3
ELDO501	Department Optional Course - I	3			3			3
ELL501	Principles of Control System Lab		2			1		1
ELL502	Linear Integrated Circuits Lab		2			1		1
ELL503	Digital Communication Lab		2			1		1
ELL504	Professional Communication & Ethics-II		2*+2			2		2
ELM501	Mini Project–2 A		4 ^{\$}			2		2
	Total	15	14		15	07		22

Semester V

* Theory class; \$ indicates workload of Learner (Not Faculty), for Mini Project

			Examination Scheme								
Course	Course Name	Intern	al Asses	sment	End	Exam.	TW	Pract/	Total		
Couc		Test 1	Test 2	Avg.	Sem. Exam	(in Hrs)		Orai			
ELC501	Principles of Control System	20	20	20	80	3			100		
ELC502	Digital Signal Processing	20	20	20	80	3			100		
ELC503	Linear Integrated Circuits	20	20	20	80	3			100		
ELC504	Digital Communication	20	20	20	80	3			100		
ELDO501	Department Optional Course - I	20	20	20	80	3			100		
ELL501	Principles of Control System Lab						25	25	50		
ELL502	Linear Integrated Circuits Lab						25	25	50		
ELL503	Digital Communication Lab						25	25	50		
ELL504	Professional Communication & Ethics-II			1			50		50		
ELM501	Mini Project–2 A						25	25	50		
	Total			100	400		150	100	750		

Department Level Optional Course - I (ELDO 501):

1. Data Structures	3. Neural Network and Fuzzy Logic
2. Biomedical Instrumentation	4. Computer Organization Architecture

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
ELC501	Principles of Control System	03			03			03	

Subject Code	Subject Name	Examination Scheme									
]	Theory Mar							
		Internal assessment				Exam	T	Drastical			
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	duratio n Hours	Work	and Oral	Total		
ELC501	Principles of Control System	20	20	20	80	3			100		

Course Objectives:

- 1. To develop the understanding of fundamental principles of control systems.
- 2. To disseminate the basic methods for time-domain and frequency-domain analysis of control systems.
- 3. To develop the concept of stability and its assessment for linear-time-invariant systems.
- 4. To introduce the design of controllers in frequency-domain and state-space.

Course Outcomes:

- 1. **Derive** the mathematical models of physical systems.
- 2. Sketch various plots in time and frequency domain and analyse the system using the plots.
- 3. **Evaluate** the stability of control systems in time and frequency domain.
- 4. **Design** performance specification based controller for a given system.
- 5. Analyse the control systems using state-space methods and design state feedback controllers.
- 6. **Design** performance specification based controller for a given system.

Module	Unit No	Contents	Hrs.
1	110.	Introduction to the Control Problem	06
-	1.1	Examples of control systems; introduction to the control problem; open	
	-	loop and closed loop systems; feed-forward control structure.	
	1.2	Differential equation models of physical systems, deriving models of	
		physical systems (electrical, mechanical, thermal, Op-amp circuits) Types	
		of models; Impulse response model; Transfer function model for	
		Electrical, Mechanical and Thermal systems	
	1.3	Block diagram and Signal Flow Graph (SFG) representation of control	
		systems; Block diagram reductions; Mason's gain formula.	
2		Time Response Analysis	06
	2.1	Standard test input signals; time response of first and second order	
		systems for standard test inputs; Application of initial and final value	
		theorem. Performance specifications for second order system (no	
		derivation); Error constants and type of the system.	-
	2.2	Concept of stability; Routh-Hurwitz Criteria; Relative stability analysis;	
2		Root-Locus technique and construction of root-loci.	
3	2.1	Frequency Response Analysis	08
	3.1	Introduction to frequency response; Frequency response plots: Polar plot	
	2.2	and Bode plot; Performance specifications in frequency domain.	-
	3.2	Nyquist criterion: Relative stability using Nyquist criterion	
4		Introduction to Controller Design	10
-	<u> </u>	Characteristics of feedback: Sensitivity to parametric variation:	10
	7,1	Disturbance rejection: Steady-state accuracy	
	4.2	Feedback controller design using Root-locus: Reshaping the root-locus:	
		Cascade lead. lag and lag-lead compensator.	
	4.3	Feedback control design using Bode plot: Reshaping the bode plot:	
		Cascade lead, lag and lag-lead compensator.	
5		State-space Analysis	07
	5.1	Concept of state variables; State-space model; Canonical forms;	
		Conversion between canonical forms using similarity transforms.	
	5.2	Solution of state-space equation; Eigen-values and eigenvectors;	
		Stability in state-space; Concept of controllability and observability.	
6		Controller Design in State-space	
	6.1	State-feedback controller design: Pole-placement method; Ackerman's	02
		formula.	
		Total	39

- 1. M. Gopal, "Control Systems: Principles and Design", 3rd edition, Tata McGraw Hill, 2008.
- 2. Richard Dorf, Robert Bishop, "Modern Control Systems", 11th edition, Pearson Education, 2008.

Reference Books:

- 1. Golnaraghi Farid, B. C. Kuo, "Automatic Control Systems", 10th edition, McGraw Hill, 2017.
- 2. K. Ogata, "Modern Control Engineering", 6th edition, Prentice Hall, 2010.
- 3. I.J. Nagrath, M. Gopal, "Control System Engineering", New Age International, 2009.
- 4. Norman Nise, "Control Systems Engineering", Wiley, 8th edition, 2019.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
ELC502	Digital Signal Processing	03			03			03	

Subject Code	Subject Name	Examination Scheme									
			J	Theory Mar							
		Internal assessment				Fyam	-				
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	duratio n Hours	Work	and Oral	Total		
ELC502	Digital Signal Processing	20	20	20	80	3			100		

Prerequisite:

ELC405: Signals and Systems

Course Objectives:

- 1. To introduce Fourier domain analysis of signals and systems and their efficient implementation.
- 2. To expose students to various design techniques for FIR/IIR filters.
- 3. To unveil the students to advances in signal processing techniques, digital signal processors and real-world applications.

Course Outcomes:

- 1. Analyze discrete time systems in frequency domain using Discrete Fourier Transform.
- 2. Design IIR digital filters to meet given filter specifications and implement the same using lattice structure.
- 3. Design FIR digital filters to meet given filter specifications and implement the same using lattice structure.
- 4. Understand Architecture of DSP processors and examine the effect of hardware limitations on performance of digital filters.
- 5. Investigate the need of multi-rate digital signal processing and implement multi-rate systems.
- 6. Apply DSP techniques in real life problems.

Module	Unit No	Contents	Hrs.
110.	110.	Discrete Fourier Transform and Fast Fourier Transform	
	1.1	Definition and PropertiOes of DFT, IDFT, circular convolution of sequences	
1		using DFT and IDFT. Relation between Z-transform and DFT. Filtering of	10
		long data sequences using Overlap Save and Overlap Add Method	
	1.2	Fast Fourier transforms (FFT). Radix-2 decimation in time and decimation	
		in frequency FFT algorithms, Inverse FFT	
		Design of Infinite Impulse Response (IIR) Filters	
	2.1	Analog filter approximations: Butterworth, Chebyshev, Inverse Chebyshev	
2		and Elliptic filters	8
	2.2	Mapping of S-plane to Z-plane, Impulse invariance method, Bilinear	
		transformation method, Design of IIR digital filters from analog filters with	
		examples (Butterworth, Chebyshev)	
	2.3	Realization of IIR filters using Lattice structures	
		Design of Finite Impulse Response(FIR) Filters	
	3.1	Characteristics of FIR digital filters, Minimum Phase, Maximum Phase,	
		Mixed Phase and Linear Phase Filters, Frequency response and location of	-
2		zeros for linear phase FIR filters	
3	3.2	Effect of truncation on ideal filter impulse response, Design of FIR filters	
		using window techniques (Rectangular, Hamming, Hanning, Blackmann,	
		Bartlet), Design of FIR filters using Frequency Sampling Technique	
	3.3	Realization of FIR filters using Lattice structures	
		DSP Processors and Finite Word Length Effects	
	4.1	Introduction to General Purpose and Special Purpose DSP processors, Fixed	
		point and floating-point DSP processors, Architecture of TMS320CXX	
4	4.2	processor Overtisation transation and rounding. Effects due to transation and	0
	4.2	quantization, truncation and rounding, Effects due to truncation and rounding Input quantization error Product quantization error Coefficient	
		quantization error. Limit cycle oscillations. Finite word length effects in	
		FIR/IIR digital filters	
		Multirate DSP and Filter Banks	
	5.1	Introduction and concept of Multirate Processing, Decimator and	
5		Interpolator, Decimation and Interpolation by Integer numbers, Multistage	5
		Approach to Sampling rate converters	
	5.2	Sample rate conversion using Polyphase filter structure, Type I and Type II	
		Polyphase Decomposition	
		DSP Applications	
	6.1	Application of DSP in Radar Signal Processing	`
0	6.2	Application of DSP in Speech Signal Processing: Echo cancellation	3
	0.5	Application of DSP in Biomedical Signal Processing: Denoising of ECG	
		Total	39

- 1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education, 2007
- 2. Tarun Kumar Rawat, "*Digital Signal Processing*", Oxford University Press, 2015

Reference Books:

- 1. L.R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, 2006.
- 2. Oppenheim A., Schafer R., Buck J., "*Discrete Time Signal Processing*", 2nd Edition, Pearson Education
- 3. Johnson J. R., "Introduction to Digital Signal Processing", Prentice Hall
- 4. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing: A Practical Approach", Pearson Education, 2001
- 5. Sanjit K. Mitra, Digital Signal Processing A Computer Based Approach edition 4e McGraw Hill Education (India) Private Limited
- 6. B. Venkata Ramani and M. Bhaskar, "*Digital Signal Processors, Architecture, Programming and Applications*", Tata McGraw Hill, 2011.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on the entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Students are encouraged to explore more applications which can be assessed by the faculty.

Subject Code	Subject Name	Теа	aching Sche	me	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC503	Linear Integrated Circuits	03			03			03

Subject Code	Subject Name		Examination Scheme									
			Theory Marks									
		In	ternal A	Assessment	End	Exam duration Hours	Term Work	Practi cal	Oral	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Exam							
	Linear											
ELC503	Integrated Circuits	20	20	20	80	03				100		

Course Pre-requisite:

- 1. Electronic Devices and Circuits I
- 2. Electronic Devices and Circuits II

Course Objectives:

- 1. To teach fundamental principles of standard linear integrated circuits.
- 2. To develop a overall approach for students from selection of integrated circuit, study its specification, the functionality, design and practical applications

Course Outcomes:

- 1. Demonstrate an understanding of fundamentals of integrated circuits.
- 2. Analyze the various applications and circuits based on particular linear integrated circuit.
- 3. Select and use an appropriate integrated circuit to build a given application.
- 4. Design an application with the use of integrated circuit
- 5. Design a real life application using certain linear Integrated Circuits
- 6. Design of power supply with proper selection of the regulator IC.

Module No.	Unit No.	Contents	Hrs.
1		Module 1 Fundamentals of Operational Amplifier	04
	1.1	Block diagram of op-amp, Characteristics of op-amp, op-amp parameters, high frequency effects on op-amp gain and phase, slew rate limitation, single supply versus dual supply op-amp	
	1.2	Configurations of op-amp: - open loop and closed loop configuration, Inverting amplifier and Non inverting amplifier	
2		Module 2:-Linear Applications of Operational Amplifier	08
	2.1	Adder, Subtractor, Difference amplifier, Integrator, Differentiator, Three Op- amp Instrumentation amplifier, V-I converter, I-V converter	
	2.2	Active Filters: - Transfer function, Design of First order and Second order of LPF, HPF, BPF and BRF	
	2.3	Oscillators: - RC phase shift and Wein bridge oscillators	
3	2.1	Module 3:-Non-linear Applications of Operational Amplifier	08
	5.1	window comparators, Applications of comparator as zero crossing detector, window comparator, level detector, Schmitt triggers, Half wave and full wave Precision rectifiers, Peak detectors, Sample & Hold circuit, Log and Antilog amplifier	
	3.2	Waveform generators: - Square wave and Triangular wane generator circuit	
4		Module 4: - Data Converters	05
	4.1	Analog to Digital: - Performance parameters, Simple ramp, Dual slop, Successive approximation and Flash ADC	
	4.2	Digital to Analog: - Performance parameters, Binary weighted and R/2R ladder	
5		Module 5: - Special Purpose Integrated Circuits	07
	5.1	Monolithic Timer: -NE555, functional block diagram, working, design and applications.	
	5.2	Functional block diagram, working, functional block diagram, working, design and applications. Voltage controlled oscillator 566, PLL 565, Function generator XR 2206, Power amplifier LM 380	
6		Module 6:- Voltage Regulators	07
	6.1	Functional block diagram of Voltage Regulators, Design of fixed voltage Regulators (78XX and 79XX), three terminal adjustable voltage regulators (LM 317 and LM 337)	
	6.2	Functional block diagram, working and design of IC 723 with current limit and	
		current foldback protection, Switching regulator topologies	
		Total	39

Recommended Books:

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- 2. William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, 4th Edition
- 3. D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition.
- 4. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University

Press, Indian Edition.

- 5. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 6. Ron Mancini, "Op Amps for Everyone", Newnes, 2nd Edition.
- 7. J. Millman and A. Grabel, "Microelectronics", Tata McGraw Hill, 2nd Edition.
- 8. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- 9. J. G. Graeme, G. E. Tobey and L. P. Huelsman, "Operational Amplifiers- Design & Applications", NewYork: McGraw-Hill, Burr-Brown Research Corporation.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final internal assessment.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory preferably objective type and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching Sche	eme		Credits A	ssigned	
ELC504	Digital	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Communication	03			03			03

	Subject Name	Examination Scheme									
Subject											
Code		In	ternal a	ssessment	End Som	Exam durati	Term	Prac tical	Oral	Total	
		Test 1	Test 2	Avg of Test 1 and Test 2	Exa m	on Hours	WORK				
ELC504	Digital Communication	20	20	20	80	03				100	

Course Pre-requisite: ELX404 Principles of Communication Engineering ELX405 Signals & Systems

Course Objectives:

- 1. Understand the typical subsystems of a digital communication system.
- 2. Understand the significance of the trade-off between SNR and Bandwidth.
- 3. Understand the effect of ISI in Baseband transmission of a digital signal.
- 4. Analyze various Digital modulation techniques.
- 5. Identify the necessity of Source encoding and Channel encoding in Digital Communication.

Course Outcomes:

- 1.Comprehend the advantages of digital communication over analog communication and explain need for various subsystems in Digital communication systems
- 2. Realize the implications of Shannon-Hartley Capacity theorem while designing the efficient Source encoding technique.
- 3. Understand the impact of Inter Symbol Interference in Baseband transmission and methods to mitigate its effect.
- 4. Analyze various Digital modulation methods and assess them based on parameters such as spectral efficiency, Power efficiency, Probability of error in detection.
- 5. Explain the concept and need for designing efficient Forward Error Correcting codes.
- 6. Understand the Optimum reception of Digital signals.

Module	Unit	Contonts	Hrs
No.	No.	Contents	1115.
	L	Introduction to Digital communication system and Probability Theory	
	1.1	Introduction to Digital communication system, significance of AWGN Channel,	
		pulse dispersion in the channel.	
	1.2	Concept of Probability Theory in Communication Systems: Introduction to	
	l	probability and sample space, Bayes' rule, conditional probability and statistical	
1	l	independence, relation between probability and probability density, PDF, CDF,	
T	l	Random variables, Mean and Variance of Random variables and sum of random	07
	1.2	variables, Definition with examples.	
	1.3	Gaussian, Rayleigh PDF & Rician Distribution, Binomial Distribution, Poisson	
		Distribution, Central-Limit Theorem.	
	0.1	Information Theory and Source Coding	05
Z	2.1	Measure of Information, Entropy, Information rate, Channel capacity, Shannon \neg	05
	2.2	Hartley Capacity Theorem and its Implications.	
	2.2	Shannon-Fano encoding, Huffman encoding, Code Efficiency and Redundancy	
		Pulse Shaping for Ontimum Transmission	04
	31	I in codes and their desirable properties. PSD of digital data	04
3	3.1	Baseband PAM transmission: Concept of Inter symbol interference (ISI) Raised	-
C C	3.4	Cosine filter, Nyquist Bandwidth, Concept of equalizer to overcome ISI	
		Digital Modulation Techniques	
	41	Concept of Binary and M-ary transmission. Coherent and Non- Coherent reception	10
	•••	Power spectral density of Pass-band signal Signal space Representation and	_
4	1	Euclidian distance.	
	4.2	Pass Band Amplitude modulation and Demodulation: BASK, M-ary PAM, Digital	
	l	Phase Modulation & Demodulation: BPSK, OQPSK, QPSK, M-ary PSK, QAM,	
	l	Digital Frequency Modulation and Demodulation: BFSK, MSK, M-ary FSK,	
	1	Introduction to spread spectrum modulation, OFDM.	
	4.3	Comparison of all techniques based on Spectral efficiency, Power efficiency,	
	L	Probability of error in detection.	
5	l	Error Control codes	
	I	Need for channel encoding. Concept of Error detection and correction. Forward	9
	5.1	Error correction.	
		Linear block codes: Hamming Distance, Hamming Weight, Systematic codes,	
	5.2	Syndrome Testing.	
		Cyclic codes; Generator polynomial for Cyclic codes, Systematic cyclic codes,	
	5.3	Feedback shift register for Polynomial division.	
	1	Convolution codes: Convolution encoder, Impulse response of encoder, State	
	5.4	diagram, trellis diagram Representations.	
6		Optimum Reception of Digital Signal	04
	6.1	A baseband signal receiver and its Probability of error.	
	6.2	The Optimum receiver and Filter.	
	6.3	Matched filter and its probability of error.	
	1	Total	39

- 1. Haykin Simon, "*Digital Communication Systems*," John Wiley and Sons, New Delhi, Forth Edition, 2014.
- 2. H. Taub, D. Schlling, and G. Saha, "*Principles of Communication Systems*," Tata Mc-Graw Hill, New Delhi, Third Edition, 2012.
- 3. Lathi B P, and Ding Z., "*Modern Digital and Analog Communication Systems*," Oxford University Press, Forth Edition, 2009.
- 4. R N Mutagi, "Digital Communication", Oxford University Press, 2nd Ed.

Reference Books:

- 1. John G. Proakis, "Digital Communications", McGraw Hill, 5th Ed
- 2. Sklar B, and Ray P. K., "*Digital Communication: Fundamentals and applications*, "Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 3. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 4. P Ramakrishna Rao, "*Digital Communication*," Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 5. Amitabha Bhattacharya, "Digital Communication", Tata McGraw Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module

Subject Code	Subject Name	Т	eaching Sche	me		Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ELDO501	Data structures	03	-		03	-		03		

Subject Code	Subject Name	Examination Scheme										
		Theory Marks										
		I	nternal	assessment	End Sem.	Exam	Term Work	Prac tical	Oral	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Exa m	duration Hours						
ELDO501	Data structures	20	20	20	80	03				100		

Course Prerequisite: C Programming

Course Objectives:

- 1. To understand basic linear and non-linear data structures.
- 2. To implement various operations on Arrays, linked list, stack, queue, binary tree, and graph.
- 3. To study different sorting and searching techniques.
- 4. To analyze efficient data structures to solve real world problems.

Course Outcomes:

- 1. Understand various linear data structures.
- 2. Perform operations on linear data structures.
- 3. Comprehend various nonlinear data structures.
- 4. Implement various operations on nonlinear data structures.
- 5. Analyze appropriate sorting and searching techniques for a given problem.
- 6. Apply appropriate data structure and algorithms for solving real world problems.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Data Structures	04
		Introduction to Data Structures, Types of Data Structures – Linear and Nonlinear, Operations on Data Structures, Concept of array, Static arrays vs Dynamic Arrays, structures.	
2		Stack and Queues	08
		Introduction, Basic Stack Operations, Representation of a Stack using Array, Applications of Stack – Well form-ness of Parenthesis, Infix to Postfix Conversion and Postfix Evaluation. Queue, Operations on Queue, Representation of a Queue using array, Circular Queue, concept of priority Queue, Applications of Queue-Round Robin Algorithm.	
3		Linked List	08
		Introduction, Representation of Linked List, Linked List v/s Array, Types of Linked List - Singly Linked List (SLL), Operations on Singly Linked List : Insertion, Deletion, reversal of SLL, Print SLL. Implementation of Stack and Queue using Singly Linked List. Introduction to Doubly Linked List and Circular Linked List	
4		Trees	08
		Introduction, Tree Terminologies, Binary Tree, Types of Binary Tree, Representation of Binary Trees, Binary Tree Traversals, Binary Search Tree, Operations on Binary Search Tree, Applications of Binary Tree – Expression Tree, Huffman Encoding.	
5		Graphs	03
		Introduction, Graph Terminologies, Representation of graph (Adjacency matrix and adjacency list), Graph Traversals – Depth First Search (DFS) and Breadth First Search (BFS), Application – Topological Sorting.	
6		Searching and Sorting	08
		Introduction to Searching: Linear search, Binary search Sorting: Internal VS. External Sorting, Sorting Techniques: Bubble, Insertion, selection, Quick Sort, Merge Sort, Comparison of sorting Techniques, Hashing Techniques, Different Hash functions, Collision & Collision resolution techniques: Linear and Quadratic probing, Double hashing.	
		Total	39

- 1. Tenenbaum, A. M., "Data structures using C", Pearson Education India, 1990.
- 2. Tremblay, J. P., & Sorenson, P. G., "An introduction to data structures with applications", McGraw-Hill, Inc, 1984.
- 3. Thareja, R., "Data structures using C", Oxford University Pres, 2014.
- 4. Gilberg, R. F., Forouzan, B. A., "Data Structures", United States, Cengage Learning, 2004.
- 5. Balagurusamy, E., "Data Structures Using C", McGraw-Hill Education (India), 2013.

Reference Books:

- 1. Bhasin, H., "Algorithms: Design and Analysis", Oxford University Press, 2015.
- 2. DATA STRUCTURES USING C, 2E. Tata McGraw-Hill Education, 2006.
- 3. Rajasekaran, S., Sahni, S., Horowitz, E., "Computer Algorithms", United States, Silicon Press, 2008.
- 4. Lipschutz, S., "Data Structures", McGraw Hill Education (India) Private Limited. Schaum's Outlines, 2014.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on the entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module

Subject Code	Subject Name	Те	eaching Sch	eme		Credits A	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELDO501	Biomedical Instrumentation	03	-		03	-		03

	Subject Name	Examination Scheme									
]	Theory	Marks						
Subject Code		Internal assessment									
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Term Work	Practical	Oral	Total	
ELDO501	Biomedical Instrumentation	20	20	20	80	03				100	

Course Pre-requisite:

- 1. Knowledge of Instrumentation and Measurement
- 2. Display devices and measurement tools
- 3. Knowledge of Human anatomy

Course Objectives:

- 1. To introduce the fundamentals of Biomedical Instrumentation Systems
- 2. To explore the human body parameter measurement setups
- 3. To make the students understand the basic concepts of diagnostic, therapeutic and imaging systems.

Course Outcomes:

- 1. Get basic technical competence in the field of Medical Instrumentation and understand the importance of electrical safety in hospital equipment.
- 2. Explain the concept of bio potential generation and measurement using electrodes with their types.
- 3. Build foundation of knowledge of analytical Instruments in Biomedical field
- 4. Acquire knowledge about the Diagnostic Equipment like ECG, EEG, EMG machines
- 5. Describe the working principle of patient monitoring and assistive systems
- 6. Distinguish between various imaging modalities such as X-ray, CT, MRI etc. based on their principles.

Module No.	Unit No.	Contents	Hrs.
1		Module 1 - Fundamentals of Biomedical Instrumentation:	6
	1.1	Basics of Medical Instrumentation, Recording Systems & Biomedical	
		Recorders, Types of biomedical equipment – Analytical, Diagnostic,	
		Therapeutic and Surgical equipment	
	1.2	Calibration of medical devices and testing of biomedical equipment, Electrical	
		classification of Biomedical Equipment Patient Monitoring Systems, Patient	
		safety	
2		Module 2 - Measurement of bio potentials	6
	2.1	Basics of Cardiovascular and Nervous systems, Bio-potential generation,	
		Electrodes for ECG, EEG, EMG	
	2.2	Electrode-tissue interfaces, electrode-electrolyte and electrolyte-skin	
2		Interfaces, Skin contact impedance Modulo 3 Analytic Instruments	6
3	31	Principle and working of - Pulse Oximeter Plethysmographs Blood Flow	0
	5.1	Meters	
	3.2	Introduction to Spectro photometers, Electrodes for pH, pO2 and pCO2	
		measurement, Blood gas analysers –, Blood cell counters, Radio Immuno Assay	
		and ELISA techniques.	
4		Module 4 - Diagnostic Equipment	7
	4.1	Electrocardiography (ECG) –ECG in diagnosis –Lead systems – Artifacts –	
		ECG Machine. Heart sounds – Phonocardiography (PCG)	
	4.2	Electro encephalography (EEG), EEG Machine, Artifacts, Electromyography	
		(EMG)–Electro neurography (ENG), Principles and applications	
5		Module 5 - Patient monitoring and Assistive system	7
	5.1	Bed-side monitors, Central station monitors, Computerized arrhythmia	
	5 2	Monitors Cardiaa Daamakara, Dafibrillatora, Vantilatora	
6	5.4	Module 6 - Imaging Equipment	7
U	61	Construction and working of X ray CT MRI imaging	,
	6.2	Basic working principle of PET, SPECT, Ultrasound imaging	
		Total	39

- 1. R S. Khandpur, "Handbook of Biomedical Instrumentation", 2004 (TMH Pub).
- 2. Leslie Cromwell, "Biomedical Instrumentation and Measurements", Pearson Education, 1980.
- 3. J G. Webster, "Medical Instrumentation, Application and Design", (John Wiley).

Reference Books:

- 1. Carr Brown "Introduction to Biomedical Equipment Technology", (PHI Pub)
- 2. L. A. Geddes & L. E. Baker, "Principles of Applied Biomedical Instrumentation", Wiley India Pvt. Ltd.
- 3. Richard Aston, "Principles of Biomedical Instrumentation and Measurements", Merril

Publishing Co.

4. Chanderlekha Goswami, "Handbook of Biomedical Instrumentation", Manglam Publications.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module

Commo	Course Name	Tea	ching Schen	ne	Credits Assigned					
Code		Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total		
ELDO501	Neural Network and Fuzzy Logic	03			03			03		

Subject Code	Subject Name	Examination Scheme									
				Theory M							
		Internal assessment			End	Evom	Term	Prac	Oral	Tatal	
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	Work	tical		Totar	
ELDO501	Neural Network and Fuzzy Logic	20	20	20	80	03				100	

Course Pre-requisite:

- 1. Knowledge of linear algebra, multivariate calculus, and probability theory
- 2. Knowledge of a programming language (PYTHON/C/C ++/ MATLAB recommended)

Course Objectives:

- 1. To study basics of biological Neural Network.
- 2. To understand the different types of Artificial Neural Networks.
- 3. To identify the applications of ANN.
- 4. To study fuzzy logic and fuzzy systems

Course Outcomes:

- 1. Understand learning rules of ANN.
- 2. Apply the concepts of supervised and unsupervised neural networks
- 3. Explain the importance of feedback networks
- 4. Understand Associative memory networks
- 5. Appreciate the need for fuzzy logic and control
- 6. **Illustrate** neural networks practical applications

Module No.	Unit No.	Contents	Hrs.							
1		Introduction	05							
	1.1	Biological neurons, McCulloch -Pitts neuron model, Types of activation function, Network architectures, Knowledge representation. Linear & non-linear separable classes & Pattern classes.								
	1.2	Learning processes: Supervised learning, Unsupervised learning and Reinforcement learning								
	1.3	Learning Rules: Hebbian Learning Rule, Perceptron Learning Rule, Delta Learning Rule, Widrow-Hoff Learning Rule, Correlation Learning Rule, Winner Take-All Learning Rule.								
	1.4	Applications and scope of Neural Networks.								
2		Supervised Learning Networks	08							
	2.1	Perception Networks – continuous & discrete, Perceptron convergence theorem, Adaline, Madaline, Method of steepest descent and least mean square algorithm.								
	2.2	Back Propagation Network.								
	2.3	adial Basis Function Network.								
3		supervised Learning Networks 08								
	3.1	Fixed weights competitive nets.								
	3.2	Kohonen Self-organizing Feature Maps, Learning Vector Quantization.								
	3.3	Adaptive Resonance Theory – 1.								
4		Associative Memory Networks	06							
	4.1	Introduction, Training algorithms for Pattern Association								
	4.2	Auto-associative Memory Network, Hetero-associative Memory Network, Bidirectional Associative Memory.								
	4.3	Discrete Hopfield Networks.								
5		Fuzzy Logic	08							
	5.1	Fuzzy Sets, Fuzzy Relations and Tolerance and Equivalence.								
	5.2	Fuzzification and Defuzzification								
	5.3	Fuzzy Controllers.								
6		Case studies on ANN	04							
	6.1	ption Networks – continuous & discrete, Perceptron convergence theorem, ne, Madaline, Method of steepest descent and least mean square algorithm.Propagation Network.08al Basis Function Networks08weights competitive nets.08I weights competitive nets.06duction, Training algorithms for Pattern Association associative Memory Network, Hetero-associative Memory Network, ctional Associative Memory.06y Logic08Sets, Fuzzy Relations and Tolerance and Equivalence.08fication and Defuzzification Controllers.04lwritten Digit Recognition, Process Identification, Expert Systems for Low Pain Diagnosis.04								
		Bidirectional Associative Memory. Interfor absociative memory intervent, interfor absociative intervent, interfor absociative intervent, interfor absociative intervent, interfor absociative intervent, interv								

- 1. Jacek M. Zurada, "Introduction to Artificial Neural Systems," Jaico Publishing House.
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications," 3rd edition, Wiley India.
- 3. S. N. Sivanandam and S. N. Deepa, "Principles of Soft Computing," 3rd edition, Wiley India.

Reference Books:

- 1. Simon Haykin, "Neural Networks A Comprehensive Foundation", 3rd edition Pearson Education.
- 2. S Rajasekaran and G A Vijayalakshmi Pai, "Neural Networks and Fuzzy Logic and Genetic Algorithms ", PHI Learning.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Note: *Students are encouraged to explore more applications which can be assessed by the faculty.

Subject Code	Subject Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELDO501	Computer Organization and Architecture	03			03			03	

		Examination Scheme									
]	Theory	Marks						
		Internal assessment									
Subject Code	Subject Name	Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Term Work	Practical	Oral 7	Total	
ELDO501	Computer Organization and Architecture	20	20	20	80	03				100	

Course Pre-requisite:

- 1. Digital Electronics
- 2. Fundamental concepts of processing

Course Objectives:

- 1. To introduce the learner to the design aspects this can lead to maximized performance of a Computer.
- 2. To introduce the learner to various concepts related to Parallel Processing
- 3. To highlight the various architectural enhancements in modern processors.

Course Outcomes:

- 1. Define the performance metrics of a Computer
- 2. Distinguish between CISC and RISC Design Philosophies
- 3. Explain the design considerations of Processor, Memory and I/O in Computer systems
- 4. Analyze the advantages and limitations of Parallelism in systems
- 5. Apply the principles of pipelining to improve performance
- 6. Evaluate the various architectural enhancements in modern processors

Module No.	Unit No.	Contents	Hrs.	
1		Introduction to Computer Organization	05	
	1.1	Fundamental Units of a Computer		
	1.2	Introduction to Buses		
	1.3	Number Representation methods- Integer and Floating-point, Booth's Multiplier, Restoring and Non-Restoring Division		
	1.4	Basic Measures of Computer Performance - Clock Speed, CPI, MIPs and MFlops		
2		Processor Organization and Architecture	08	
	2.1	CPU Architecture, Register Organization, Instruction cycle, Instruction Formats, Addressing Modes		
	2.2	Control Unit Design- Hardwired and Micro-programmed Control: Vertical		
		and Horizontal Micro-Instructions, Nano-programming		
	2.3	Comparison between CISC and RISC architectures		
3		Memory Organization	10	
	3.1	Classification of Memories-Primary and Secondary Memories, RAM (SRAM and DRAM) and ROM (EPROM, EEPROM), Memory Inter- leaving		
	3.2	Memory Hierarchy, Cache Memory Concepts, Mapping Techniques, Write		
		Policies, Cache Coherency		
	3.3	Virtual Memory Management-Concept Segmentation Paging Page		
	0.0	Replacement policies		
4		Input/Output Organization	04	
-	4.1	Types of I/O devices and Access methods, Types of Buses, Bus Arbitration		
	4.2	Direct Memory Access (DMA)		
5		Parallelism	06	
	5.1	Introduction to Parallel Processing Concepts, Flynn's classification, Amdahl's law		
	5.2	Pipelining - Concept, Speedup, Efficiency, Throughput, Types of Pipeline hazards and solutions		
6		A rebitactural Enhancements	06	
U		Superscalar Architectures, Out-of-Order Execution, Multi-core processors,	vo	
		Clusters, GPU, Processing-in -Memory (PIM)		
		Total	39	

- 1. William Stallings, "Computer Organization and Architecture: Designing for *Performance*", Eighth Edition, Pearson.
- 2. C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw Hill, 2002.

Reference Books:

- 1. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.
- 2. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.
- 3. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design The Hardware/Software Interface", Morgan Kaufmann, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Tea	ching Schem	e	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELL501	Principles of Control System Lab		02			01		01	

Subject Code	Subject Name	Examination Scheme									
				Theory							
		Internal assessment			End	Exam	Term	Practical And	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	Work	Oral	1000		
ELL501	Principles of Control System Lab						25	25	50		

Term Work:

At least 10 experiments covering the entire syllabus of ELL501 (Principles of Control System) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiments must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exams will be based on the entire syllabus.

Course Outcomes:

- 1. Analyse a control system in time and frequency domain.
- 2. Design a performance specification based controller in time and frequency domain.
- 3. **Develop** and tune PID controller for given control system.
- 4. Evaluate controllability and observability of a control system.
- 5. **Design** a state feedback controller according to given specifications.

Suggested List of Experiments

(Expected percentage of H/w and software experiments should be 60% & 40% respectively)

Sr.	Experiment Title
No.	
1	To study the time response of a first-order and second-order system to standard input signals.
2	To study the frequency response of a second-order system to standard input signals.
3	To solve a differential equation model using simulation software.
4	To study the steady-state errors for type-0, 1 and 2 systems.
5	To design a controller according to given performance specifications using root-locus.
6	To design a controller according to given performance specifications using bode plot.
7	To design appropriate lag, lead or lag-lead compensator using bode plot.
8	To perform stability analysis of several control systems using Nyquist plots.
9	To study similarity transforms for state-space canonical forms.
10	To study controllability and observability of control systems.
11	To design a state feedback controller using pole-placement and ackerman's formula.
12	To introduce the PID controller and its tuning.

(*Experiments can be performed online using simulation software as well as hardware. Free simulation software like Scilab can be used to perform the experiments.*)

Note:

Suggested List of Experiments is indicative. However, flexibility lies with individual course instructors to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Teachers are encouraged to develop a strong understanding of the subject using case studies like the one shown in [1] and [2].

[1] M. Gunasekaran and R. Potluri. Low-cost undergraduate control systems experiments using microcontroller-based control of a dc motor. IEEE Transactions on Education, 55(4):508 – 516, Nov. 2012

[2] Control Systems Laboratory Manual, EE380, IIT Kanpur. https://www.iitk.ac.in/ee/data/Teaching_labs/Control_System/EE380_labmanual.pdf

Subject	Subject Name	Tea	ching Schen	ne	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELL502	Linear Integrated Circuits Lab		02			01		01	

Subject Code		Examination Scheme									
	Name			Theo Mar	Term	Practical and Oral	Total				
		Internal assessment			End Sem		Exam duration	Work	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Exam	Hours					
ELL502	Linear Integrated Circuits Lab						25	25	50		

Course Pre-requisite:

• Electronic Devices and Circuits I and II

Course Objectives:

- 1. To teach fundamental principles of standard linear integrated circuits.
- 2. To develop a overall approach for students from selection of integrated circuit, study its specification, the functionality, design and practical applications

Course Outcomes:

After successful completion of the course student will be able to

- 1. Demonstrate an understanding of fundamentals of integrated circuits.
- 2. Analyze the various applications and circuits based on particular linear integrated circuit.
- 3. Select and use an appropriate integrated circuit to build a given application.
- 4. Design an application with the use of integrated circuit
- 5. Demonstrate use of ADC and DAC to sense and control physical quantities
- 6. Design the Power supply for the given specifications.

Term Work: At least six experiments based on the entire syllabus of Subject (Linear Integrated Circuits) should be set to have well predefined inference and conclusion. Few computation/simulation based experiments are encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and

averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

(Expected percentage of H/w and software experiments should be 60% & 40% respectively)

Sr. No.	Experiment Name
1	Experiment on op amp parameters
2	Experiment on design of application using op amp (Linear)
3	Experiment on implementation of op amp application e.g. oscillator
4	Experiment on non-linear application (e.g. comparator, Astable and mono-stable Multi- vibrator) of op amp
5	Experiment on non-linear application (e.g. peak detector, Precision Rectifier) of op amp
6	Experiment on ADC interfacing
7	Experiment on DAC interfacing
8	Experiments on IC 555 (Astable and mono-stable Multi-vibrator)
9	Experiment on voltage regulator Design of LVLC, LVHC, HVLC
10	Experiment on voltage regulator Design of HVLC, HVHC
11	Experiment on voltage regulator Design for Fold-back current limiting circuit.
12	Experiment based on VCO 566 and PLL565
13	Experiment on implementation of instrumentation system (e.g. data acquisition).

Note:

Suggested List of Experiments is indicative. However, flexibility lies with the individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	Tea	aching Sche	me	Credits Assigned				
ELL503	Digital Communication	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	Lab		02			01		01	

	Subject Name	Examination Scheme								
Subject Code		Theory Marks					Term	Pract	Oral	Total
		Internal assessment			End	Exam	Work	ical	Ulai	IUtai
		Test	Test	Avg of Test 1	Sem.	duratio				
		1	2	and Test 2	Exa	n Hours				
					m					
	Digital									
ELL503	Communication						25	25		50
	Lab									

Term Work:

Lab session includes Ten experiments

The experiments will be based on the syllabus contents.

- 1. Minimum 10 experiments need to be conducted, out of which at least four experiments should be software-based (*Scilab, MATLAB, LabVIEW, Python, Octave etc*). The experiments should be set to have well predefined inference and conclusion.
- 2. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.
- 3. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus
| Sr. No. | Experiment Name |
|---------|--|
| 1 | Line codes |
| 2 | Binary modulation techniques: BASK,BPSK,BFSK |
| 3 | M-ary modulation techniques: QPSK ,QAM |
| 4 | Minimum shift Keying |
| 5 | PDF& CDF of Raleigh / Normal/ Binomial Distributions |
| 6 | Eye pattern, Power factor for PAM signal |
| 7 | Source encoding: Huffman coding for Binary symbols |
| 8 | Shannon-Hartley equation to find the upper limit on the Channel Capacity |
| 9 | Linear Block code : code generation, Syndrome |
| 10 | Cyclic code-code generation, Syndrome |
| 11 | Convolutional code-code generation from generator sequences |
| 12 | Generation of FHSS and DSSS signal |
| 13 | Error performance and Quality factor of QPSK/BPSK/MSK Modulation |

Suggested List of Experiments

Note:

Suggested List of Experiments is indicative. However, flexibility lies with the individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	Teaching Scheme				Credits As	ssigned	
		Theory	Practical	Tutor ial	Theory	Practical	Tutorial	Total
ECL504	Professional Communication and Ethics-II		2 [*] + 2 Hours (Batch-wise)			02		02

*Theory class to be conducted for full class.

		Examination Scheme									
Subject Code	Subject Name	Theory Marks									
		Internal assessment		End	Exam	Term	Pract	Oral	Total		
		Test	Test	Avg of Test	Sem. duration Exam Hours	duration	Work	ical			
		1	2	1 and Test 2		Hours					
	Professional										
ECL504	Communication						25		25	50	
	and Ethics - II										

Course Objectives:

Learners should be able to:

- 1. Discern and develop an effective style of writing important technical/business documents.
- 2. Investigate possible resources and plan a successful job campaign.
- 3. Understand the dynamics of professional communication in the form of group discussions, meetings, etc. required for career enhancement.
- 4. Develop creative and impactful presentation skills.
- 5. Analyse personal traits, interests, values, aptitude and skills.
- 6. Understand the importance of integrity and develop a personal code of ethics

Course Outcomes:

- 1. Plan and prepare effective business/ technical documents which will in turn provide solid foundation for their future managerial roles.
- 2. Strategize their personal and professional skills to build a professional image and meet the demands of the industry.
- 3. Emerge successful in group discussions, meetings and result-oriented agreeable solutions in group communication situations.
- 4. Deliver persuasive and professional presentations.
- 5. Develop creative thinking and interpersonal skills required for effective professional communication.
- 6. Apply codes of ethical conduct, personal integrity and norms of organizational behavior.

Module No.	Unit No.	Contents						
1		ADVANCED TECHNICAL WRITING: PROJECT/PROBLEM BASED LEARNING (PBL)	06					
	1.1	Purpose and Classification of Reports						
		Classification on the basis of:						
		Subject Matter (Technology, Accounting, Finance, Marketing, etc.), Time Interval						
		(Periodic, One-time, Special), Function (Informational, Analytical, etc.), Physical						
	12	Pactors (Memorandum, Letter, Snort & Long)	-					
	1.2	Prefatory Parts (Front Matter) Report Proper (Main Body) Appended Parts (Back						
		Matter)						
	1.3	Language and Style of Reports	-					
		Tense, Person & Voice of Reports, Numbering Style of Chapters, Sections, Figures,						
		Tables and Equations, Referencing Styles in APA & MLA Format, Proof-reading						
		through Plagiarism Checkers						
	1.4	Definition, Purpose & Types of Proposals						
		Solicited (in conformance with RFP) & Unsolicited Proposals, Types (Short and						
		Long proposals)						
	1.5	Parts of a Proposal						
	1.(Elements, Scope and Limitations, Conclusion	-					
	1.0	Derts of a Technical Paper (Abstract Introduction Research Mathods Findings and						
		Analysis Discussion Limitations Future Scope and References) Language and						
		Formatting Referencing in IEEE Format						
2		EMPLOYMENT SKILLS	06					
	2.1	Cover Letter & Resume						
		Parts and Content of a Cover Letter, Difference between Bio-data, Resume & CV,						
		Essential Parts of a Resume, Types of Resume (Chronological, Functional &						
		Combination)						
	2.2	Statement of Purpose						
		Importance of SOP, Tips for Writing an Effective SOP	-					
	2.3	Verbal Aptitude Test Modelled on CAT, CDF, CMAT exemp						
	2.4	Group Discussions						
	2.4	Purpose of a GD. Parameters of Evaluating a GD. Types of GDs (Normal, Case-						
		based & Role Plays). GD Etiquette						
	2.5	Personal Interviews	-					
		Planning and Preparation, Types of Questions, Types of Interviews (Structured,						
		Stress, Behavioral, Problem Solving & Case-based), Modes of Interviews: Face-to-						
		face (One-to one and Panel) Telephonic, Virtual						
3		BUSINESS MEETINGS	02					
	3.1	Conducting Business Meetings						
		Types of Meetings, Roles and Responsibilities of Chairperson, Secretary and						
		Members, Meeting Etiquette						
	3.2	Documentation						
Δ		TECHNICAL / RUSINESS DDESENTATIONS	02					
-	41	Fffective Presentation Strategies	02					
	-T • T	phroute a rependent of angles	1					

		Total	26
		· · · · · · · · · · · · · · · · · · ·	
		Cases related to Business/ Corporate Ethics	
	6.2	Case Studies	
		Integrated Circuits, Trade Secrets (Undisclosed Information)	
		Copyrights, Trademarks, Patents, Industrial Designs, Geographical Indications	
	6.1	Intellectual Property Rights	
6		CORPORATE ETHICS	02
		Market Trends, etc.)	
		Financial Literacy, Risk Assessment, Data Analysis (e.g. Consumer Behavior,	
	5.2	Start-up Skills	-
		Negotiation, Time Management, Assertiveness, Decision Making	
		Emotional Intelligence, Leadership & Motivation, Conflict Management &	
C	51	Interpersonal Skills	_ 00
5		INTERPERSONAL SKILLS	08
		Transition Phases	
	7.2	Sharing Responsibility in a Team Building the contents and visuals together.	
	12	Group Presentations	
		Presentations Aids Closing a Presentation Platform Skills	/1
		& Arranging Material Structuring a Presentation Making Effective Slides Types of) f
		Defining Purpose Analyzing Audience Location and Event Gathering Selecting	

LIST OF ASSIGNMENTS FOR TERMWORK:

(In the form of Short Notes, Questionnaire/ MCQ Test, Role Play, Case Study, Quiz, etc.)

- 1. Cover Letter and Resume
- 2. Short Proposal
- 3. Meeting Documentation
- 4. Writing a Technical Paper/ Analyzing a Published Technical Paper
- 5. Writing a SOP
- 6. IPR
- 7. Interpersonal Skills
- 8. Aptitude test (Verbal Ability)

Note:

- 1. The Main Body of the project/book report should contain minimum 25 pages (excluding Front and Back matter).
- 2. The group size for the final report presentation should not be less than 5 students or exceed 7 students.
- 3. There will be an end-semester presentation based on the book report.

GUIDELINES FOR INTERNAL ASSESSMENT

Term Work:

Term work shall consist of minimum 8 experiments.

The distribution of marks for term work shall be as follows:					
Assignment	: 10 Marks				
Attendance	: 5 Marks				
Presentation slides	: 5 Marks				
Book Report (hard copy)	: 5 Marks				

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal oral:

Oral Examination will be based on a GD & the Project/Book Report presentation.

Group Discussion	:10 marks
Project Presentation	:10 Marks
Group Dynamics	:5 Marks

Text books and Reference books:

- 1. Arms, V. M. (2005). *Humanities for the engineering curriculum: With selected chapters from Olsen/Huckin: Technical writing and professional communication, second edition.* Boston, MA: McGraw-Hill.
- 2. Bovée, C. L., & Thill, J. V. (2021). *Business communication today*. Upper Saddle River, NJ: Pearson.
- 3. Butterfield, J. (2017). *Verbal communication: Soft skills for a digital workplace*. Boston, MA: Cengage Learning.
- 4. Masters, L. A., Wallace, H. R., & Harwood, L. (2011), *Personal development for life and work*. Mason: South-Western Cengage Learning.
- 5. Robbins, S. P., Judge, T. A., & Campbell, T. T. (2017). *Organizational behaviour*. Harlow, England: Pearson.
- 6. Meenakshi Raman, Sangeeta Sharma (2004) Technical Communication, Principles and Practice. Oxford University Press
- 7. Archana Ram (2018) Place Mentor, Tests of Aptitude For Placement Readiness. Oxford University Press
- 8. Sanjay Kumar & Pushp Lata (2018). Communication Skills a workbook, New Delhi: Oxford University Press.

Subject Code	Subject Name	Credits Assigned
ECM501	Mini project - 2A	02

				Exa	minati	on Schen	ne		
			Theory Marks				Term Work	Practical/ Oral	Total
Course	Course Course		Internal Assessment			Exam duration Hours			
Code	Name	Test 1	Test 2	Avg. of Test 1 and Test 2					
ECM501	Mini Project - 2A						25	25	50

Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Outcomes:

Learner will be able to;

- 1. Identify problems based on societal /research needs.
- 2. Apply knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/experimental/simulations.
- 5. Analyze the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices.
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life-long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Major focus of Mini-project 2 shall be towards exploration and applicability of knowledge acquired in the domain areas of DLOs available for the year.

- Student shall give special consideration to identify and provide solutions to the burning societal and/or environmental issues which may affect the mankind to larger extend.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.

A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.

- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self- learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case-to-case basis.

Guidelines for Assessment of Mini Project:

The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester. In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

Distribution of Term work marks for both semesters shall be as below;

Marks awarded by guide/supervisor based on logbook:10Marks awarded by review committee:Quality of Project report:05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year project:

In **first semester** entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.

- First on identification and finalization of problem
- Second on proposed solution for the problem.

In **second semester** expected work shall be procurement of components/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.

- First review shall base on readiness of building working prototype.
- Second review shall be based on poster presentation-cum-demonstration of working model in last month of the said semester.

Half-year project:

In this case students' group shall complete project in all aspects, in a semester, including;

- Identification of need/problem
- \circ $\,$ Proposed acceptable solution for the identified problem
- Procurement of components/systems, if any,
- Building a working prototype and testing

The group shall be evaluated twice during the semester by review committee, mainly look for the progress as;

- First review focus shall be towards identification & selection of problem and probable solution proposal.
- Second review shall be for implementation and testing of solution. (Innovative/out of box solution)

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria:

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Innovativeness and out of box thinking
- 6. Cost effectiveness and Societal impact
- 7. Functional working model as per stated requirements
- 8. Effective use of skillsets acquired through curriculum including DLOs
- 9. Effective use of standard engineering practices & norms
- 10. Contribution of an individual as team member/Leader
- 11. Feasibility to deploy the solution on large scale
- 12. Clarity in written and oral communication

In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini-

project.

In case of **half year project** all criteria's in generic may be considered for performance evaluation of students in mini-project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

Report should be prepared as per the guidelines issued by the University of Mumbai. Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations, having experience of more than five years approved by head of the Institute.

Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed by team of external & internal examiner at the end of semester/year. Performance shall be evaluated based on;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Implementation of working model
- 5. Effective use of diversified skill-set
- 6. Effective use of standard engineering practices & norms
- 7. Contribution of an individuals as a member/Leader
- 8. Clarity in written and oral communication

Program Structure for Third Year Electronics Engineering UNIVERSITY OF MUMBAI (With Effect from 2021-2022)

Course	Course Name	Teac (Cor	hing Scl ntact Ho	heme ours)	Credits Assigned			
Coue		TH	PR	Tut	TH	Pract.	Tut	Total
ELC601	Basic VLSI Design	3			3			3
ELC602	Electromagnetic Engineering	3			3			3
ELC603	Computer Communication Networks	3			3			3
ELC604	Embedded Systems and Real Time Operating Systems	3			3			3
ELDO601	Department Optional Course - II	3			3			3
ELL601	Basic VLSI Design Lab		2			1		1
ELL602	Computer Communication Networks Lab		2			1		1
ELL603	Embedded Systems and Real Time Operating Systems Lab		2			1		1
ELL604	Database Management Systems Lab		4			2		2
ELM601	Mini Project–2 B		4 ^{\$}			2		2
	Total	15	14		15	07		22

Semester VI

\$ indicates workload of Learner (Not Faculty), for Mini Project

		Examination Scheme									
Course	Course Name	А	Internal Assessment			Exam. Duration	TW	Pract/ Oral	Total		
Couc		Test 1	Test 2	Avg.	Exam	(in Hrs)					
ELC601	Basic VLSI Design	20	20	20	80	3			100		
ELC602	Electromagnetic Engineering	20	20	20	80	3			100		
ELC603	Computer Communication Networks	20	20	20	80	3			100		
ELC604	Embedded Systems and Real Time Operating Systems	20	20	20	80	3			100		
ELDO601	Department Optional Course - II	20	20	20	80	3			100		
ELL601	Basic VLSI Design Lab						25	25	50		
ELL602	Computer Communication Networks Lab						25	25	50		
ELL603	Embedded Systems and Real Time Operating Systems Lab						25	25	50		
ELL604	Database Management Systems Lab						50		50		
ELM601	Mini Project–2 B						25	25	50		
Total	Total			100	400		150	100	750		
Depa	rtment Level Optional Course - I (ELI	DO 60	1):								
1. Digital C	ontrol System	3. Machine Learning									
2. Digital Image Processing and Machine Vision			4. Digital Design with Reconfigurable Architecture								

\mathcal{C}		U
Digital	Image Processing and Machine Vision	4. Digital Design with Reconfigurable Architecture

Subject Code	Subject Name	Те	aching Scho	eme		Credits A	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC601	Basic VLSI Design	03	-		03	-		03

	Subject Name	Examination Scheme											
				Theory	Marks								
Subject Code		Internal assessment				_	Torm						
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Work	Practical	Oral	Total			
ELC601	Basic VLSI Design	20	20	20	80	03				100			

Course Pre-requisite:

- 1. Electronics Devices and circuits I (ELC302)
- 2. Digital Logic Circuits(ELC303)
- 3. Electronics Devices and Circuits II (ELC402)

Course Objectives:

- 1. To understand VLSI Design flow and technology trends.
- 2. To realize MOS based circuits using different design styles.
- 3. To study semiconductor memories using MOS logic.
- 4. To study adder, multiplier and shifter circuits for realizing data path design.

Course Outcomes:

- 1. Demonstrate a clear understanding of VLSI Design flow, technology trends, scaling and MOSFET models.
- 2. Design and analyze MOS based inverters.
- 3. Understand different MOS circuit design styles.
- 4. Apply design styles for realization of Combinational and Sequential Circuits
- 5. Understand various semiconductor memories using MOS logic
- 6. Design adder, multiplier and shifter circuits using MOS logic

Module No.	Unit No.	Contents	Hrs.
1		VLSI Design flow and Technology Trends	06
	1.1	VLSI Design Flow: Full custom and Semicustom IC design flow	
	1.2	MOSFET Scaling: Types of scaling, comparison of MOSFET Model levels,	
		MOSFET capacitances, interconnect scaling and crosstalk	
	1.3	Technology Comparison: Comparison of BJT and MOS technologies	
2		MOSFET Inverters	08
	2.1	Introduction to MOS inverters: Active and passive load nMOS inverters, CMOS	ı.
		inverter and their comparison	
	2.2	Static Analysis of Resistive nMOS and CMOS Inverters: Calculation of critical	
		voltages and noise margins	
	2.3	Design of symmetric CMOS inverter	
	2.4	Dynamic Analysis of CMOS inverter: Calculation of rise time, fall time and	-
		propagation delay	
	2.5	Various components of power dissipation in CMOS circuits	1
3		MOS Circuit Design Styles	05
	3.1	Static: Static CMOS, Pass transistor, Transmission gate, Pseudo NMOS design	
		styles	
	3.2	Dynamic: C ² MOS, Dynamic, Domino, NORA and Zipper design styles	
4		Combinational and Sequential Circuit Realization	08
	4.1	Analysis and design of 2-I/P NAND, 2-I/P NOR and complex Boolean function	L
		realisation using equivalent CMOS inverter for simultaneous switching	
	4.2	Complex Boolean function realisation using various design styles	
	4.3	Basic gates and MUX realisation using pass transistor and transmission gate	
		logic	-
	4.4	SR Latch, JK FF, D FF, 1 Bit Shift Register realisation using CMOS logic	
5		Semiconductor Memories	07
	5.1	SRAM: 6T SRAM operation, design strategy, read/write circuits, sense	2
		amplifier	-
	5.2	DRAM: IT DRAM, operation modes, leakage currents, refresh operation,	
	5 2	physical design	-
	5.3	ROM Array: NAND and NOR based ROM array	-
	5.4	Non-volatile read/write memories: Programming techniques for flash	
		memory, introduction to advances in non-volatile memories: MIKAW, $\mathbf{R} \in \mathbf{R} \wedge \mathbf{M}$	
6		Data Path Design	05
_	6.1	Adder: CLA adder, MODL, Manchester carry chain	
		High-speed adders: carry skip, carry select and carry save	
	6.2	Multipliers and shifter: Array multiplier and barrel shifter	1
		Total	39

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design" Tata McGraw Hill, Revised 4th Edition.
- 2. John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley India Pvt. Ltd.

Reference Books:

- 1. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2nd Edition
- 2. Douglas A Pucknell, Kamran Eshraghian, "Basic VLSI Design", Prentice Hall of India Private Ltd.
- 3. Ivan Sutherlan and Bob Sproull, "Logical Effort: Designing Fast CMOS Circuits"
- 4. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill
- 5. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education
- 6. David Hodges, Horace Jackson, Resve Saleh, "Analysis and Design of Digital Integrated Circuits", McGraw-Hill, Inc.
- 7. Ashok K. Sharma, "Advanced Semiconductor Memories: Architectures, Designs, and Applications", Wiley Publication
- 8. Denny D.Tang, Chi-Feng Pai, "Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond", Wiley online Library
- 9. Daniele Ielmini, Rainer Waser, "Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications", Wiley online Library

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module

		Teac	ching Schem	e	Credits Assigned				
Course Code	Course Name	Theory	Practical and Oral	Tutorial	TW/Pra Theory ctical and Oral		Tutori al	Total	
ELC602	Electromagnetic Engineering	03			03			03	

Subject Code	Subject Name	Examination Scheme										
				Theory	Term Work	Practical and Oral	Total					
		Internal assessment			End	Exam duration Hours						
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam							
ELC602	Electromagnetic Engineering	20	20	20	80	3			100			

Course Pre-requisites:

- 1. Vector Algebra (ELC301)
- 2. Engineering Physics
- 3. Electrical Network Analysis (ELC304)
- 4. Principles of Communication Engineering (ELC404)

Course Objectives:

- 1. To provide the basic skills required to understand, develop, and design various engineering applications involving electromagnetic fields.
- 2. To lay the foundations of electromagnetism and its practice in modern communications.
- 3. To provide an introduction to electromagnetic wave transmission through guided media.
- 4. To provide exposure to global safety standards in electromagnetic interference.

Course Outcomes:

- 1. Apply vector calculus to static electric and magnetic fields in different engineering situations.
- 2. Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems.
- 3. Analyze the phenomena of electromagnetic wave propagation in different media and in applications of microwave engineering.
- 4. Analyze the nature of electromagnetic wave propagation through transmission lines.
- 5. Evaluate and analyze different antenna structures and their applications.
- 6. Examine the sources of EMI and identify methods to ensure compatibility as per existing standards for electrical and electronic systems.

Module	Unit	Contonts	Urc
No.	No.	Contents	1115.
1		Basic Laws of Electromagnetic	09
	1.1	Qualitative interpretation of Gradient, Divergence and Curl; Coulomb's	
		Law & Electric Field Intensity, Derivation of electric field intensity due to	
		point, line and surface charges; Electric flux density, Gauss's Law and	
		divergence theorem; Relationship between Electric field & Potential.	
	1.2	Current and current Density, Continuity equation; Electric boundary	
	1.0	conditions; Poisson's and Laplace's equation.	
	1.3	Biol-Savari s Law, Ampere's Circuital Law, magnetic field intensity of	
		scalar and vectors potentials: Magnetic houndary conditions	
2		Maxwell's Equations	06
4	21	Faraday's law concept of transformer and motional electromotive	vu
	2.1	forces: Displacement current Ampere's Law for time-varying fields	
		Maxwell's equations in differential and integral form: Concept of time	
		varying potentials, Lorentz gauge conditions.	
	2.2	Concept of phasors and time harmonic fields.	
3		Electromagnetic Waves	06
-	3.1	Derivation of electromagnetic wave equation. General representation of	
		EM waves.	
	3.2	Wave Propagation in Free Space, Lossy and Lossless Dielectrics and in	
		Good Conductors, Skin Effect, Wave Polarization, Poynting's Theorem;	
		Introduction to microwaves as an EM wave application.	
4		Transmission Lines	06
	4.1	Transmission line parameters, Transmission line equations; Input	
		impedance, reflection coefficient, standing wave ratio and power.	
	4.2	Smith Chart, Applications of Smith Chart in finding VSWR, reflection	
		coefficient, admittance calculations and impedance calculations over	
5		Introduction to Antonnos	00
5	51	Introduction to antennas and radiation machanism: Basic antenna	Võ
	3.1	parameters. Radiation pattern radiation power density radiation	
		intensity, HPBW, FNBW, directivity, Antenna radiation efficiency,	
		Gain, bandwidth, polarization, input impedance, effective length, near	
		and far field regions; FRIIS transmission equation.	
	5.2	Far-field radiating fields, radiation resistance and directivity of an	
		infinitesimal dipole; Comparison between small dipole, finite length	
		dipole and a half wavelength dipole; Introduction to antenna arrays; linear	
		array of two isotropic point sources, principle of pattern multiplication;	
		Qualitative introduction to horn antennas, reflector antennas and	
		microstrip antennas.	0.4
6		Introduction to EMI/EMC	04
		Definition of EMI/EMC, introduction to sources and characteristics of	
		ENIL, ENIL CONTROL LECTINIQUES LIKE grounding, snielding and mitering. EMC	
		CISPR requirements	
		Total	39

l

- 1. William H Hayt, John A Buck, Jaleel M. Akhtar, "Engineering Electromagnetics", 9th ed., McGraw-Hill Higher Education, 2020.
- 2. Matthew N. O. Sadiku, S. V. Kulkarni, "Principles of Electromagnetics", 6th ed., Oxford University Press, 2015.
- 3. R. K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005.
- 4. C. A. Balanis, "Antenna Theory: Analysis and Design", 4th ed., John Wiley & Sons, NJ, 2015.
- 5. W. Prasad Kodali, "Engineering Electromagnetic Compatibility: Principles, Measurements, Technologies and Computer Models", 2nd ed., Wiley-IEEE Press, 2001.
- 6. Clayton R. Paul, "Introduction to Electromagnetic Compatibility", John Wiley & Sons, 2nd ed., 2006.

Reference Books:

- 1. John D. Kraus, Daniel A. Fleisch, "Electromagnetics: With Applications", 5th ed., Tata McGraw Hill, 2010.
- 2. Joseph Edminister, Mahmood Nahvi, "Schaum's Outline of Electromagnetics", 5th ed., McGraw Hill, 2018.
- 3. J. D. Kraus, R. J. Marhefka, A.S. Khan, "Antennas & Wave Propagation", McGraw Hill Publications, 5th ed., 2017.
- 4. R. E. Collin, "Antennas and Radio Wave Propagation", International Student Edition, McGraw Hill, 1985.
- 5. Henry Ott, "Electromagnetic Compatibility Engineering", Wiley, 2009.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Teac	ching Scheme	(Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Total	
ELC 603	Computer Communication and Networks	3			3		03	

Subject	Subject Name				Examinatio	on Schem	e		
Code			T	heory Marks		Term	Practical	Oral	Total
		Int	ernal as	ssessment	End	Work			
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1 and	Exam				
				Test 2					
ELC603	Computer Communication and Networks	20	20	20	80	-			100

Course Pre-requisite: ELC 404 Principles of Communication Engineering ELC 504 Digital Communication

Course Objectives:

The objectives of this course are to:

- 1. Introduce networking architecture and protocols.
- 2. Understand the various layers and protocols in the TCP/IP model.
- 3. Recognize different addressing schemes, connecting devices and routing protocols.
- 4. Select the required protocol from the application layer protocols.

Course Outcomes:

- 1. **Demonstrate** understanding of networking concepts and required protocols.
- 2. Analyze the various layers and protocols of the layered architecture.
- 3. Evaluate different addressing schemes, connecting devices and routing protocols.
- 4. Analyze various routing protocols in Network layer.
- 5. Understand the various protocols in Transport layer
- 6. Comprehend the different protocols in application layer

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to Network Architectures, Protocol Layers, and Service models	04
	1.1	Introduction to computer networks and it's uses. LAN, MAN, WAN Network	
		topologies Addressing: Physical / Logical /Port addressing, Protocols and Standards	
	12	Protocol Architecture: Need of layered protocol architecture I avers details of OSI	
	1.4	Protocol Layers and Their Service Models	
	1.3	TCP/IP Model: Protocol suite, Comparison of OSI and TCP/IP	
2.		Physical Layer	06
	2.1	Transmission Media: Guided media like Coaxial, fiber, twisted pair, and Wireless	
		media, Transmission Impairments. Interconnecting Devices: Hub, Bridges, Switches, Router, Gateway	
	2.2	Introduction to LAN: LAN Protocol architecture	
		Traditional Ethernet and IEEE 802.3 LAN Standard : Ethernet protocol, Frame structure, Physical layers: LLC, MAC layers	
	2.3	Multiplexing: Synchronous TDM, Statistical TDM, ADSL	
3.		Data Link Control	10
	3.1	Data link services: Framing, Flow control, Error control, ARQ methods, Piggybacking	
	3.2	High Level Data Link Control (HDLC): HDLC configurations, Frame formats, Typical frame exchanges.	
	3.3	Medium Access Control Protocols: ALOHA, Slotted ALOHA, CSMA, CSMA/CD	
4.0		Network Layer	10
	4.1	Switching : Switched communication networks, Circuit switching networks, Circuit switching Concepts –Crossbar switch, Time Slot Interchange (TSI), TDM bus switching, Packet switching principles: Virtual circuit switching and Datagram switching	
	4.2	Routing in Packet Switching Networks: Characteristics, Routing strategies, Link state Routing, Distance vector Routing. Least-Cost Routing Algorithms: Dijkstra's Algorithm, Bellman Ford Algorithm.	
	4.3	Internet Protocol: Principles of Internetworking: Requirements, Connectionless Operation Internet Protocol Operation: IP packet, IP addressing - classful and classless, subnet and supernet addressing, IPv4, IPv6 (IPv6 Datagram format, comparison with IPv4, and transition from IPv4 to IPv6)	
5.0		Transport Layer	06
	5.1	Connection –oriented Transport Protocol Mechanisms: Transmission Control Protocol (TCP): TCP Services, TCP Header format, TCP three way handshake, TCP state transition diagram. Connectionless transport mechanisms: User Datagram Protocol (UDP) - header	
	5.2	Congestion: Effects of congestion, Congestion control methods, Congestion control in Packet switching Networks	
6.0		Application layer	03
		HTTP, FTP, DNS, SMTP, Internet Telephony and Streaming Multimedia	
		Total	39

Recommended Text Books

- 1. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 2. Behrouz A. Forouzan, "Data communication and networking ", McGraw Hill Education, Fourth Edition.
- 3. Alberto Leon Garcia, "Communication Networks", McGraw Hill Education, Second Edition

Reference books:

- 1. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 2. Computer Networking: A Top-Down Approach, by J. F. Kurose and K. W. Ross, Addison Wesley, 5th Edition.
- 3. Bhushan Trivedi, "Data Communication and Network", Oxford Publication Press, 1st edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4. Remaining question will be selected from all the modules.

Note: *Students are encouraged to explore more applications which can be assessed by the faculty.

Subject Code	Subject Name	Те	eaching Sche	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELC604	Embedded Systems and Real Time Operating Systems	03			03			03	

		Examination Scheme											
			r	Theory	Marks								
Subject	Subject Name	Internal assessment											
Code	Subject Name	Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Term Work	Practical and Oral	Oral	Total			
ELC604	Embedded Systems and Real Time Operating Systems	20	20	20	80	03				100			

Course Pre-requisite:

- 1. Digital Electronics
- 2. Basics of Microcontrollers

Course Objectives:

- 1. To study concepts involved in Embedded Hardware and Software for System realisation.
- 2. To learn the concepts of modern microcontroller cores like the ARM-Cortex
- 3. To learn Real-time programming to design time-constrained embedded systems

Course Outcomes:

- 1. Identify and describe various characteristic features and applications of embedded systems.
- 2. Analyze and select hardware for embedded system implementation.
- 3. Evaluate various communication protocols for embedded system implementation.
- 4. Compare GPOS and RTOS and investigate the concepts of RTOS.
- 5. Evaluate and use various tools for testing and debugging embedded systems
- 6. Design a system for different requirements based on life-cycle for the embedded system, keeping oneself aware of ethics and environmental issues.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Embedded Systems	03
	11	Definition Characteristics Classification Applications	
	1.1	Design metrics of Embedded system and Challenges in optimization of metrics	
2		Embedded Hardware Elements	13
	2.1	Features of Embedded cores- µC, ASIC, ASSP, SoC, FPGA, RISC and CISC cores.	
		Types of memories.	
	2.2	Case Study: ARM Cortex-M3 Features, Architecture, Programmer's model, Special	
		Registers, Operating Modes and States, MPU, Memory map and NVIC.	
	2.3	Low power - Need and techniques. Case study of Low Power modes in Cortex-M3.	
	2.4	Communication Interfaces: Comparative study of Serial communication	
		Interfaces -RS-232, RS-485, SPI, I2C, CAN, USB (v2.0), Bluetooth, Zig-Bee.	
		(Frame formats of above protocols are not expected)	
	2.5	Selection Criteria of Sensors and Actuators	
3		Embedded Software	12
	3.1	Program Modelling concepts: DFG, CDFG, FSM.	
	3.2	Real-time Operating system: Need of RTOS in Embedded system software	
		and comparison with GPOS. Task, Task states, Multi-tasking, Task scheduling, and	
		algorithms-Preemptive SJF, Round-Robin, Priority, Rate Monotonic Scheduling,	
		Earliest Deadline First	
		Inter-process communication: Message queues, Mailbox, Event timers.	
		Task synchronization: Need, Issues- Deadlock, Race condition, live Lock, Solutions	
		using Mutex, Semaphores.	
		Shared Data problem, Priority inversion.	
4		Introduction to FreeRTOS	03
		FreeRTOS Task Management features, Resource Management features, Task	
		Synchronization features, Event Management features, Calculation of CPU	
		Utilization of an RTOS, Interrupt Management features, Time Management features.	
5		Testing and Debugging Methodology	02
	5.1	Testing & Debugging: Hardware testing tools, Boundary-scan/JTAG interface	
	5.2	Concepts, Emulator.	
6	3.2	Software Testing tools, Simulator, Debugger. White-Dox and Diack-Dox testing.	06
U	61	Embaddad Braduat Dacign Life Cycle (EDLC), Weterfell Model	VU
	0.1	Landware Software Co. design	
	0.2	Hardware-Software Co-design	
	0.3	Case studies for Automatic Chocolate vending Machine, washing Machine, Smart	
		Card, mgnngnting	
		 Specification requirements (choice of components), Handmann and iteratory 	
		11) Hardware architecture	
		111) Software architecture	20
		Total	- 39

Note: Referring to data sheets while selecting Embedded Hardware components must be encouraged.

- 1. Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.
- 2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.
- 3. SriramIyer, Pankaj Gupta," Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.
- 4. Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.
- 5. www.freertos.org

Reference Books:

- 1. David Simon, "An Embedded Software Primer", Pearson, 2009.
- Jonathan W. Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Publisher - Cengage Learning, 2012 Edition 3rd.
- 3. Andrew Sloss, Domnic Symes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004
- 4. Frank Vahid, Tony Givargis, "Embedded System Design A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.
- 5. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4. Remaining questions will be selected from all the module

Course Code	Course Name	Tea	ching Scheme	e	Credits Assigned					
		Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total		
ELDO601	Digital Control Systems	03			03			03		

Subject Code	Subject Name		Examination Scheme												
				Theory N	Iarks	Term Work	Practical and Oral	Total							
		Inte	rnal ass	essment	End	Exam duration Hours									
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam										
ELDO601	Digital Control Systems	20	20	20	80	03			100						

Course Objectives:

- 1. To develop the understanding of fundamental principles of digital control systems.
- 2. To disseminate the concept of stability and its assessment for discrete-time linear systems.
- 3. To introduce Z-transform methods and digital controller design.
- 4. To develop modern state-space methods in digital control systems design.

Course Outcomes:

- 1. **Employ** sampling and reconstruction of analog signals.
- 2. **Derive** discrete-time models of physical systems.
- 3. Evaluate the stability of digital control systems in time and frequency domain.
- 4. **Design** performance specification based digital controller for a given system.
- 5. **Analyse** the digital control systems using state-space methods and **design** digital state feedback controllers.

Module	Unit No	Contents	Hrs.
1	110.	Fundamentals of discrete-time signals and discretization	06
1	1.1	Why study digital control systems? Advantages and limitations	00
	1.1	comparison of continuous and discrete data control, block diagram	
		of digital control system.	
	1.2	Impulse sampling, Nyquist-Shannon sampling theorem,	
		reconstruction discrete-time signals (Ideal filter).	
	1.3	Realizable reconstruction methods (ZOH and FOH), transfer	
		functions of ZOH and FOH.	
2		Modelling of Digital Control Systems	06
	2.1	Discretization approaches: Impulse invariance, step invariance,	
		bilinear transformation, finite-difference approximation of	
		derivative.	
	2.2	Starred Laplace transform, Pulse transfer function and general	
3		Stability Analysis and Digital Controller Design	10
5	31	Mapping between s-plane and z-plane, stability analysis of digital	10
	5.1	systems in z-plane.	
	3.2	Transient and steady-state analysis of time response.	
	3.3	Digital controller design using the root-locus method; digital PID	1
		controller; deadbeat controller.	
	3.4	Realization of digital controllers: direct programming, standard	
		programming, series programming, parallel programming ladder	
		programming.	
4		State-space Analysis of Discrete-time Systems	09
	4.1	Discretization of continuous-time state-space solution and discrete-	
		time state-space model. Representation of difference equation to	
	12	State-space.	
	4.2	transformations.	
	4.3	Solution of discrete-time state-space equation. Computation of	
		state-transition matrix (z-transform, Caley-Hamilton theorem,	
		Diagonalization)	
5		Controller Design in State-space	08
	5.1	Concept of controllability, distinction between reachability and	
		controllability, digital controller design using pole-placement	
	5.0	methods (similarity transform, Ackerman's formula)	
	5.4	observability in discrete-time systems	
	5.3	Observer design (prediction and current observer) output	1
	~~~	feedback controller, introduction to separation principle.	
		Total	39

- 1. Katsuhiko Ogata, "Discrete-time Control Systems", 2nd edition, Pearson Education, 1995.
- 2. M. Gopal, "Digital Control and State Variable Methods", Tata McGraw Hill, 4th edition, 2012.

# **Reference Books:**

- 1. Gene Franklin, J David Powell, Michael Workman, "Digital Control of Dynamic Systems", Addison Wesley, 3rd edition, 1998.
- 2. B. C. Kuo, "Digital Control Systems", Oxford University Press, 2nd edition, 2010.

# Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

# **End Semester Examination:**

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Note: Students are encouraged to take case study of real life applications.

Course		Tea	ching Scheme	9	Credits Assigned				
Code	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
ELDO601	Digital Image Processing and Machine Vision	03			03			03	

	Subject Name	Examination Scheme									
Subject Code				Theory	Term Work	Practical and Oral	Total				
		Internal assessment			End	Exam duration Hours					
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam						
ELDO601	Digital Image Processing and Machine Vision	20	20	20	80	3			100		

# **Pre-requisites:**

A student has to understood following subjects before learning this subject:

- 1. Engineering Mathematics III (ELC301)
- 2. Engineering Mathematics IV (ELC401)
- 3. Digital Signal Processing (ELC502)

# **Course Objectives:**

- 1. To learn the fundamental concepts of image processing for image enhancement.
- 2. To learn image compression, segmentation techniques with practical applications.
- 3. To provide basic concepts of machine vision and application development.

# **Course Outcomes:**

- 1. Represent and interpret image in its numeric and graphical form.
- 2. Perform different image enhancement approaches for improving image quality.
- 3. Elucidate the mathematical modelling of image segmentation.
- 4. Apply the concept of image compression.
- 5. Understand machine vision system elements.
- 6. Develop a machine vision system based on requirement.

Module No.	Unit No.	Contents	Hrs.
1	110	Digital Image Processing Fundamentals	04
	1.1	Introduction: Background, Representation of a Digital Image, Fundamental Steps in Image Processing, Elements of a Digital Image Processing System.	
	1.2	Digital Image Fundamentals: Elements of Visual Perception, A Simple Image Model, Two dimensional Sampling and Quantization, Tonal and Spatial Resolutions, Image File Formats: BMP, TIFF and JPEG. RGB Color model.	
2		Enhancement in Spatial and Frequency Domain	09
	2.1	Enhancement in the spatial domain: Some Simple Intensity Transformations, Histogram Processing, Image Subtraction, Image Averaging.	
	2.2	Spatial domain filters: Smoothing Filters, Sharpening Filters, High boost filter, 2D-DFT/FFT of an image, Frequency domain image enhancement techniques.	
3		Image Segmentation and Morphological Operations	10
	3.1	Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding, Region based image segmentation, split and merge techniques. Image Representation and Description, Chain Code, Polygonal Representation.	
	3.2	Binary Morphological Operators, Dilation and Erosion, Opening and Closing, Hit-or-Miss Transformation, Thinning and Thickening.	
4		Image Compression	05
		Fundamentals: Coding Redundancy, Inter-pixel Redundancy, Psycho visual Redundancy Lossless Compression Techniques: Run Length Coding, Huffman Coding, Lossy Compression Techniques: Predictive Coding, Improved Gray Scale Quantization, Transform Coding, JPEG Standard.	
5		Machine Vision Basics	04
		Introduction, definition, Active vision system, Machine vision components, hardware's and algorithms, Image Feature Extraction.	
6		Machine Vision Applications in Industry	07
		Machine Vision for Industrial Applications, Low Angle Metal Surface (Crosshead) Inspection, Machine Vision System for Quality Grading of Painted Slates, Inspecting Glass Bottles and Jars, Stemware Inspection System, Glass Thickness Measurement Using Morphology, Inspecting Food Products	
		Total	39

- 1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition.
- 2. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition.
- 3. Bruce G. Batchelor (Ed.), "Machine Vision Handbook", Springer, 1st Edition.
- 4. Peter Corke, "Robotics, Vision and Control", Springer, 1st Edition.

# **Reference Books:**

- 1. S. Jayaraman, E.Esakkirajan and T. Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009.
- 2. Milan Sonka, Vaclav Hlavac, and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Second Edition, Thomson Learning, 2001.
- 3. Zeuch, Nello, "Understanding and Applying Machine Vision", CRC Press; 2nd edition.
- 4. Bershold Klaus, Paul Holm, "Robot vision", The MIT press.

# **Internal Assessment (IA):**

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

# **End Semester Examination:**

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Tea	aching Sche	me	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EDLO601	Machine Learning	03	-		03	-		03		

Subject Code	Subject Name	Examination Scheme										
		Theory Marks										
		Ir	ternal	assessment	End	Exam	Term Work	Practi cal	Oral	Total		
		Test	Test	Avg of Test 1 and Test 2	Sem. Exam	duration Hours						
	Machine	1			0.0					100		
EDLO601	Learning	20	20	20	80	03				100		

## **Course Pre-requisite:**

- 1. Linear algebra, multivariate calculus, and probability theory
- 2. Neural Networks
- 3. Knowledge of a programming language (PYTHON/C/C ++/ MATLAB recommended)

## **Course Objectives:**

- 1. Apply Machine Learning techniques in real life applications.
- 2. Understanding nature of problems solved with Machine Learning.
- 3. Understand learning process by human and Machine learning algorithms.

# **Course Outcomes:**

- 1. **Develop** Machine Learning Techniques which can be used in real world scenario.
- 2. Comprehend regression, classification that are used in machine learning.
- 3. Apply different Dimensionality reduction and clustering methods that are used in machine learning.
- 4. Analyze Dimensionality reduction techniques.
- 5. **Uunderstand** the working of Probabilistic models
- 6. **Demonstrate** understanding to real life problems

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Machine Learning	
	1.1	What is Machine Learning? Why Machine Learning?	
	1.2	Examples of Machine Learning Problems, Structure of Learning, Issues in Machine Learning	
	1.3	Applications of Machine Learning	
	1.4	How to choose Right Algorithm, Steps in Developing a Machine Learning Application	4
	1.5	Machine learning Models: Geometric Models, Logical Models, Probabilistic Models. Features: Feature types, Feature Construction and Transformation, Feature Selection	
2		Classification and Regression	8
	2.1	Binary Classification, assessing classification performance, Multi-class Classification	
	2.2	Linear regression, Logistic regression, Multi-class regression, Assessing performance of Regression- Error measures	
3		Supervised Learning	8
	3.1	Using Decision Trees, Constructing Decision Trees, Ranking and Probability estimation Trees, Classification and Regression Trees (CART)	
	3.2	Bayesian Logistic Regression, Naive Bay's classifier, Bayesian Belief Networks	
4		Unsupervised learning	8
	4.1	Dimensionality Reduction: Dimensionality Reduction Techniques, Principal Component Analysis (PCA)	
	4.2	K-means Clustering, Hierarchical Clustering, Expectation Maximization Algorithm, Supervised Learning after Clustering	
5		Learning Models	8
	5.1	Support Vector Machines, Maximum Margin Linear Separator	
	5.2	Quadratic Programming Solution to finding maximum margin separators, Kernels for learning non-linear functions	
6		Case Studies In Machine Learning	3
		Retail store sales prediction, Credit card Fraud detection (anomaly detection), healthcare, Telecommunications- Customer churn prediction	
		Total	39

- 1. Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", Cambridge University Press.
- 2. Hastie, Tibshirani, Friedman, "Introduction to Statistical Machine Learning with Applications in R", Springer, 2nd Edition, 2012
- 3. Peter Harrington, "Machine Learning In Action", DreamTech Press.

# **Reference Books:**

- 1. Ethem Alpaydin, "Introduction to Machine Learning", PHI 2nd Edition, 2013
- 2. C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 1st Edition, 2013

## Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

# **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

*Note:* **Students are encouraged to explore more applications which can be assessed by the faculty.* 

Subject Code	Subject Name	Te	eaching Sch	eme	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ELDO601	Digital Design with Reconfigurable Architecture	03			03			03		

	Subject Name	Examination Scheme										
				Theory	Marks							
		Internal assessment										
Subject Code		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Term Work	Practical	Oral	Total		
ELDO 601	Digital Design with Reconfigurable Architecture	20	20	20	80	03				100		

# **Course Pre-requisite:**

Digital Logic Circuits (ELC303)

# **Course Objectives:**

- 1. To understand, analyze & design finite state machines (FSM)
- 2. To train students in writing VHDL code of combinational & sequential circuits
- 3. To prepare students to design FSM using hardware description languages (HDL)
- 4. To motivate students to use reconfigurable devices for digital systems.

# **Course Outcomes:**

- 1. Analyze & design FSM.
- 2. Understand fundamentals of HDL and its use for designing combinational circuits.
- 3. Apply the concept of HDL for designing sequential circuits.
- 4. Develop FSM by using the fundamentals of HDL.
- 5. Design of complex digital systems.
- 6. Understand and distinguish FPGA and CPLD architecture.

Module No.	Unit No.	Contents	Hrs.
1		State Machines Design	8
	1.1	Mealy and Moore machines, Clocked synchronous state machine design, State reduction techniques, State assignment, Clocked synchronous state machine analysis.	
	1.2	Design examples on overlapping and non-overlapping sequence detector, Odd/even parity checker for serial data, vending machines.	
2		Introduction to VHDL	8
	2.1	Core features of VHDL, Data types, Concurrent and Sequential statements, Data flow, Behavioral and Structural architectures, Subprograms: Function and Procedure.	
	2.2	Design examples of combinational circuits like Multiplexers, De-multiplexers, Adder, Subtractor, Priority Encoder	
3		Design of sequential circuit using VHDL	6
	3.1	Design examples for Flip flops, Synchronous counters, Asynchronous counters, Shift registers	1
4		Design of Finite State Machines (FSM) using VHDL	6
	4.1	VHDL code for Moore, Mealy type FSMs, Serial adders, Traffic light controller, Vending machines.	
5		System Design using VHDL	6
	5.1	Parallel Multiplication, Booth Multiplication, MAC unit, ALU, Memory: ROM and RAM	
6		Simulation, Synthesis and Implementation	5
	6.1	Functional simulation, Timing simulation, Logic synthesis, RTL.	1
	6.2	CPLD, SRAM based FPGA architecture, Spartan II.	
		Total	39

- 1. M. Morris Mano,"Digital Design", 5th Edition, Pearson Education India, 2012.
- 2. John Wakerley, "Digital Design Principles & Practices" Pearson Publication, 3rd edition.
- 3. Volnei A. Pedroni, "Circuit Design with VHDL" MIT Press, 2004.
- 4. Wayne Wolf, "FPGA Based System Design" Pearson Education.
- 5. W. I. Fletcher, "Engineering Approach to Digital Design" PHI publications.

# **Reference Books:**

- 1. R. P. Jain, "Modern Digital Electronics", 4th Edition, McGraw Hill Education, 2016.
- 2. Stephen Brown, Zvonko Vranesic, "Fundamentals of Digital Logic Design" McGraw Hill, 2nd edition.
- 3. John M. Yarbrough, Digital Logic Applications and Design, Thomson Publications, 2006.
- 4. P. J. Ashenden, "The students guide to VHDL" Elsevier, 1999.
- 5. Xilinx online resources www.xilnix.com

## **Internal Assessment (IA):**

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks.

# **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL601	Basic VLSI Design Lab		02		-	01		01

	Subject Name	Examination Scheme									
Subject Code		Theory Marks									
		Internal assessment					Taura		Due officel		
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	l erm Work	Practical	& Oral	Total	
ELL601	Basic VLSI Design Lab	-	-	-	-	-	25		25	50	

## **Course Objectives:**

- 1. To acquire SPICE coding / circuit simulators skills for realizing MOS based circuits
- 2. To compare and analyze performance of various MOS Inverters
- 3. To implement MOS based combinational and sequential circuits

## **Course Outcomes:**

#### After successful completion of the course students will be able to:

- 1. Develop circuits using SPICE / circuit simulators.
- 2. Design and analyze MOS based inverters.
- 3. Verify different MOS circuit design styles.
- 4. Validate functionality of Combinational and Sequential Circuits using different design styles.
- 5. Examine various semiconductor memories using MOS logic.
- 6. Enhance skills of building adder, multiplier and shifter circuits using MOS logic.

## Term Work:

At least 10 experiments covering entire syllabus of ELC601 (Basic VLSI Design) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Use of different types of circuit simulators / industry standard simulators is encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Sr.	Title of the Experiment						
No.	The of the Experiment						
1	To write SPICE code for obtaining Transfer Characteristics (Id-Vg) and Output characteristics (Id-Vd) of enhancement and depletion type nMOS and pMOS transistors and extract parameter like subthreshold leakage current ( $I_L$ ), threshold values ( $V_{TC}$ ) and Subthreshold Swing (SS)						
2	To study the impact of MOSEET scaling on the device performance						
3	To study the impact of MOSFET Model parameters in Level1 / Level2 on the drain characteristics.						
4	To study the Voltage Transfer Characteristics (VTC) of resistive Load nMOS inverter and calculate high and low noise margins by extracting critical voltages. Also study the impact of variation of load resistance on VTC and hence on the noise margin.						
5	To study the effect of Kr or transistor sizing on the VTC of CMOS inverter using SPICE simulation.						
6	To analyse the transient performance of CMOS inverter.						
7	To compare performance of different types of inverters by plotting their VTCs using SPICE code.						
8	To realise the complex Boolean function using different design styles.						
9	To realise Basic gates / MUX circuits using Pass transistor /Transmission gate logic.						
10	To realise SR Latch, JK FF, D FF using MOS logic.						
11	To realise SRAM /DRAM using MOS logic.						
12	To realise adder / multiplier / shifter circuits.						

# **Suggested List of Experiments**

*Experiments can be performed using simulation tools such as NGSPICE, LTSPICE, DSCH2, etc.* 

Note:

Suggested List of Experiments is indicative. However, flexibility lies with individual course instructor to design and introduce new, innovative, problem based learning and challenging experiments, from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.
		Examination Scheme										
		Theory Mark						Practical				
Subject Code	Subject Name	Inter	internal assessment End Hours Exam duration Fraction	And Oral	Total							
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam							
ELL602	Computer Communication Networks Lab						25	25	50			

**Course Prerequisite :** ELC 404 Principles of Communication Engineering ELC 504 Digital Communication

# **Course Objectives:**

- 1. Introduce networking architecture and protocols.
- 2. Understand the various layers and protocols in the TCP/IP model.
- 3. Recognize different addressing schemes, connecting devices and routing protocols.
- 4. Select the required protocol from the application layer protocols.

# **Course Outcomes:**

# After successful completion of the course students will be able to:

- 1. **Demonstrate** understanding of networking concepts and required protocols.
- 2. Analyze the various layers and protocols of the layered architecture.
- 3. Evaluate different addressing schemes, connecting devices and routing protocols.
- 4. Analyze various routing protocols in Network layer.
- 5. Understand the various protocols in Transport layer
- 6. Comprehend the different protocols in application layer

# Term Work:

# Lab session includes Seven experiments and a case study (Power Point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum Seven experiments need to be conducted, out of which at least Four experiments should be software-based (C/C++, Scilab, MATLAB, LabVIEW, etc).
- 3. Each student (in groups of 3/4) must present a Case study (Power point Presentation) as a part of the laboratory work.
- 4. The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology. ("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+REPORT) carry minimum of 10 marks. The term work assessment can be carried out based on the different tools and the rubric decided by the concerned faculty members and need to be conveyed to the students well in advance.

At least 07 experiments covering entire syllabus of ELL602 (CCN Lab) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged.

Each student (in groups of 3/4) must present a Case study (Power point Presentation) as a part of the laboratory work. The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology ("Beyond the scope of the syllabus"). Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+REPORT) carry minimum of 10 marks.

The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

# **Suggested List of Experiments**

(Expected percentage of H/w and software experiments should be 60% & 40% respectively)

Sr. No.	Experiment Title
1	Study of transmission media and interconnecting devices of communication networks.
2	Implementation of serial transmission using RS232.
3	Implementing bit stuffing algorithm of HDLC using C/C++.
4	Implementation of Routing protocols using C/C++.
5	Study of NS2 simulation software.
6	Implementation of TCP/UDP session using NS2.
7	Implementation of ARQ methods using NS2.
8	Study of WIRESHARK and analyzing Packet using WIRESHARK.
9	Study and implementation of IP commands.
10	Study of GNS software and implementation of routing protocols using GNS.

All the experiments can be performed using simulation softwares. (Free simulation software Scilab can be used)

#### Note:

Suggested List of Experiments is indicative. However, flexibility lies with the individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject	Subject Name	Teaching Scheme			Credits Assigned			
Code	Subject func	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL603	Embedded Systems and Real Time Operating Systems Lab		02			01		01

		Examination Scheme										
Subject Code	Subject Name			נ נ	Theory Marks		Term	Practical	Total			
		Internal assessment			End Sem.	Exam duration	Work	and Oral	Total			
		Test	Test	Avg of	Exam	Hours		orui				
		1	2	Test 1								
				Test 2								
ELL603	Embedded Systems and Real Time Operating Systems Lab						25	25	50			

**Prerequisite:** Basics of Microcontroller programming C programming

Course Objectives: To design and write efficient code for single-tasking and multi-tasking embedded systems

# **Course Outcomes:**

# After successful completion of the course students will be able to:

- 1. Interface various sensors and actuators to embedded cores.
- 2. Write code using RTOS for multi-tasking Embedded systems
- 3. Design applications using different embedded cores

# **Term Work:**

At least 10 experiments covering entire syllabus of **Embedded Systems and Real Time Operating Systems** (**ELC604**) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

- 1. Students must perform the experiments using Simulation as well as in Hardware.
- 2. Experiments must include a minimum of 3 experiments using FreeRTOS

# List of Experiments

Sr. No.	Experiment Name
1	Interfacing of LEDs /switches with any embedded core. (8051/ARM/STM32, etc)
2	Interfacing of Temperature sensor with any embedded core. (8051/ARM/STM32, etc)
3	Interfacing of LCD/ Seven segment display with any embedded core. (8051/ARM/STM32, etc)
4	Interfacing of Ultrasonic/Humidity sensor with any embedded core. (8051/ARM/STM32, etc)
5	Interfacing of a relay with any embedded core. (8051/ARM/STM32, etc)
6	Interfacing of a DC motor (speed and Direction control) with any embedded core. (8051/ARM/STM32,etc)
7	Interfacing of a stepper motor (to move by a particular angle) with any embedded core. (8051/ARM/STM32, etc)
8	Implement power management in any embedded core of your choice
9	Implement the I2C communication to connect to DS1307 RTC
10	Porting of FreeRTOS to Arduino/STM32.
11	Write a Program to Create Multiple Tasks and understand the Multitasking capabilities of RTOS (FreeRTOS).
12	Write a Program to illustrate the Queue Management Features of FreeRTOS.
13	Write a Program to illustrate the Event Management Features of FreeRTOS.
14	Write a Program to illustrate the use of Binary and Counting Semaphore for Task
	Synchronization using FreeRTOS.
15	Build a Multitasking Real-Time Applications using the above IPC
	Mechanisms (Message Queue, EventGroup, Semaphores) with FreeRTOS on Arduino/STM32.

Note:

Suggested List of Experiments is indicative. However, flexibility lies with individual course instructors to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

~ -		Teaching Scheme			Credits Assigned			
Code	Subject Name	Theory	Practical and Oral	Tutorial	Theory	Practical and Oral	Tutorial	Total
	Database							
ELL604	Management		02*+02			02		02
	Systems Lab							

* Theory class to be conducted for full class

	~	Examination Scheme										
Subject Code	Subject Name			The	ory Marks		Term	Practical	Total			
		In a	nternal ssessm	ent	End Sem.	Exam duration	Work	and Oral				
		Test	Test	Avg of Test 1	Exam	Hours						
			2	and Test 2								
	Database											
ELL604	Management Systems Lab						50		50			

# Course Pre-requisites: Any programming language

#### **Course Objectives:**

- 1. To identify, define problem statements and construct conceptual data model for real life applications.
- 2. To build Relational Model from conceptual model(ER/EER).
- 3. To apply SQL to store and retrieve data efficiently.
- 4. To demonstrate notions of normalization for database design.

#### After successfully implementation of the case studies student will acquire following skills:

- 1. Identify the need of database, and define the problem statement for real life applications.
- 2. Create relational model for real life applications
- 3. Formulate query using SQL for efficient retrieval of data.

**Syllabus:** In order to perform the case studies given below, students must refer the following modules.

Module	Topics
1	Detahaga System Concents and Analitesture
1	Database System Concepts and Arcintecture
	Introduction, Characteristics of Databases, File system v/s Database system, Data
	abstraction and Data Independence, DBMS system architecture, Database Administrator
	(DBA), Role of DBA
2	The Entity-Relationship Model
	Conceptual Modeling of a database, The Entity-Relationship (ER) Model, Entity Type,
	Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Weak entity
	Types, Generalization, Specialization and Aggregation, Extended Entity-Relationship
	(EER) Model.
3	Relational Model & Relational Algebra
	Introduction to Relational Model, Relational Model Constraints and Relational Database
	Schemas, Concept of Keys: Primary Kay, Secondary key, Foreign Key, Mapping the ER
	and EER Model to the Relational Model, Introduction to Relational Algebra, Relational
	Algebra expressions for Unary Relational Operations, Set Theory operations, Binary
	Relational operation
	Relational Algebra Queries
4	Structured Query Language (SQL) & Indexing
	Overview of SQL, Data Definition Commands, Set operations, aggregate function, null
	values, Data Manipulation commands, Data Control commands, Complex Retrieval
	Queries using Group By, Recursive Queries, nested queries. Integrity constraints in SQL.
	Database Programming with JDBC, Security and authorization: Grant & Revoke in SQL
	Functions and Procedures in SQL and cursors. Indexing: Basic Concepts, Ordered
	Indices, Index Definition in SQL
5	Relational Database Design
	Design guidelines for relational Schema, Functional Dependencies, Database tables and
	normalization, The need for normalization, The normalization process, Improving the
	design, Definition of Normal Forms- INF, 2NF, 3NF & The Boyce-Codd Normal Form
	(BUNF).
0	Transactions Management and Concurrency and Recovery
	Transaction concept, Transaction states, ACID properties, Transaction Control
	Controls Look based Timestern based protocols Decovery Systems Look based
	Control: Lock-based, Thestamp-based protocols, Recovery System: Log based
	recovery, Deadlock nandling

# Term Work:

The case study may be chosen on any relevant topic which needs a database as backend. Suggested case studies are as follows:

- 1) Company Database Management System
- 2) University Database Management System
- 3) Hospital Management System
- 4) Student Management System
- 5) Library Management System

#### Selected case study may be divided into the following set of experiments.

- 1. Identify the case study and detail statement of problem. Design an Entity-Relationship(ER) / Extended Entity-Relationship (EER) Model & Mapping ER/EER to Relational schema.
- 2. Create a database using Data Definition Language (DDL) and apply integrity constraints for the specified case study.
- 3. Apply DML commands for the specified system & perform simple queries, string manipulation operations and aggregate functions.
- 4. Implement various join operations, nested and complex queries.
- 5. Implementation of views and triggers.
- 6. Implement procedure and functions
- 7. Use of database connectivity like JDBC.
- 8. Deploy the application.

#### **Assignments:**

- 1. Perform Normalization: 1NF, 2NF, 3NF.
- 2. Privileged database user creation.

#### **Suggested Books:**

- 1. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, Pearson
- 3. Peter Rob and Carlos Coronel, "Database Systems Design: mplementation and Management", Thomson Learning, 5th Edition.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH

Course code	Course Name	Credits
ELM 601	Mini Project 2B	02

# Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- **3**. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

# **Outcome:**

Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyze the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life-long learning.
- 9. Demonstrate project management principles during project work.

# **Guidelines for Mini Project**

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project

of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.

• However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

# **Guidelines for Assessment of Mini Project:**

# **Term Work**

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;

0	Marks awarded by guide/supervisor based on log book	: 10
0	Marks awarded by review committee	: 10
0	Quality of Project report	: 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

# **One-year project:**

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
  - First shall be for finalization of problem
  - Second shall be on finalization of proposed solution of problem.
- In second semester expected work shall be procurement of components/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
  - First review is based on readiness of building working prototype to be conducted.
  - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

# Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
  - Identification of need/problem
  - Proposed final solution
  - Procurement of components/systems
  - Building prototype and testing
  - Two reviews will be conducted for continuous assessment,
    - First shall be for finalization of problem and proposed solution
    - Second shall be for implementation and testing of solution.

# Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

# **Guidelines for Assessment of Mini Project Practical/Oral Examination:**

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

# **UNIVERSITYOFMUMBAI**



Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

# FACULTY OF TECHNOLOGY

# **Electronics Engineering**

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Course Code	Course Name	T (	eaching Sche Contact Hou	me rs)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX701	Instrumentation System Design	04			04			04
ELX702	Power Electronics	04			04			04
ELX703	Digital signal processing	04			04			04
ELXDLO703X	Department Level Optional course III	04			04			04
ILO701X	Institute Level Optional Course I#	03			03			03
ELXL701	Instrumentation System Design Lab.		02			01		01
ELXL702	Power Electronics Lab.		02			01		01
ELXL703	Digital signal processing Lab.		02			01		01
ELXL704	Project-I		06			03		03
ELXLDLO703 X	Dept. Level Optional course III Lab.		02			01		01
	TOTAL	19	14		19	07		26

B.E.	(Electronics	Engineering)	– Semester	VII
D.L.	(Electronics)	Engineering	Schester	V 11

				Exam	Examination Scheme – Semester VII           Theory           tt (IA)         End         Exam         Term         Oral         Prace         Total           AVG.         Sem         Exam         Durati         Work         /Prac         Total           20         80         03          100           20         80         03          100           20         80         03          100           20         80         03          100           20         80         03          100				
		<b>T</b> .		Theory		n	T		
Course Code	Course Nome	Interna	I Assessme	ent (IA)	End	Exam	I erm	Oral (Drac	Tatal
Course Code	Course Name	Test I	Test II	AVG.	Sem Exam	Durati	WOLK	/Prac	Totai
					Marks	(Hours			
						)			
ELX701	Instrumentation System Design	20	20	20	80	03			100
ELX 702	Power Electronics	20	20	20	80	03			100
ELX 703	Digital signal processing	20	20	20	80	03			100
ELXDLO703X	Department Level Optional	20	20	20	80	03			100
	courses in								
ILO701X	Institute Level Optional Subject	20	20	20	80	03			100
ELXL701	Instrumentation System Design						25	25	50
	Luo.								
ELXL702	Power Electronics Lab.						25	25	50
ELXL703	Digital signal processing Lab.						25	25	50
ELXL704	Project-I						50	50	100
ELXLDLO703 X	Dept. Level Optional courses III Lab.						25	25	50
	Total	100	100	100	400	15	150	150	800

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I*
ELXDLO7031	Neural Network and Fuzzy Logic	ILO7011	Product Lifecycle Management
ELXDLO7032	Advance Networking Technologies	ILO7012	Reliability Engineering
ELXDLO7033	Robotics	ILO7013	Management Information System
ELXDLO7034	Integrated Circuit Technology	ILO7014	Design of Experiments
		ILO7015	Operation Research
		ILO7016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II [#]
	-		
ELXDLO8041	Advanced Power Electronics	ILO8021	Project Management
ELXDLO8042	MEMS Technology	ILO8022	Finance Management
ELXDL 08043	Virtual Instrumentation	II 08023	Entrepreneurshin Development and Management
LEADLOOU	virtuar mistrumentation	1200025	Entrepreneursing Development and Management
ELXDLO8044	Digital Image Processing	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		H 00007	
		ILO8027	IPR and Patenting
		11 09029	Digital Buginaga Managamant
		11.08028	Digital Dusiness Management
		ILO8029	Environmental Management

# **B.E.** (Electronics Engineering)

Course Code	Course Name	T (	eaching Sche Contact Hour	me rs)		Credits As	ssigned	rial         Total           -         04           -         04           -         04           -         04           -         04           -         04           -         04           -         04           -         04           -         04           -         04           -         01			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
ELX701	Instrumentation System Design	04			04			04			
ELX702	Power Electronics	04			04			04			
ELX703	Digital signal processing	04			04			04			
ELXDLO703X	Department Level Optional course III	04			04			04			
ILO701X	Institute Level Optional Course I#	03			03			03			
ELXL701	Instrumentation System Design Lab.		02			01		01			
ELXL702	Power Electronics Lab.		02			01		01			
ELXL703	Digital signal processing Lab.		02			01		01			
ELXL704	Project-I		06			03		03			
ELXLDLO703 X	Dept. Level Optional course III Lab.		02			01		01			
	TOTAL	19	14		19	07		26			

Course Code	Course Name	T(	eaching Scher Contact Hour	me ·s)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX801	Internet of Things	04			04			04
ELX 802	Analog and Mixed VLSI Design	04			04			04
ELXDLO804X	Department Level Optional course IV	04			04			04
ILO802X	Institute Level Optional course II#	03			03			03
ELX801	Internet of Things Lab.		02			01		01
ELXL802	Analog and Mixed VLSI Design Lab.		02			01		01
ELXL803	Project-II		12			06		06
ELXLDLO804 X	Department Level Optional Courses IV Lab.		02			01		01
	TOTAL	15	18		15	9		24

Course		Те	aching Sche	me	Credits Assigned				
Code	Course Name	Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total	
ELX 701	Instrumentation System Design	04			04			04	

				Ex	amination Schem	e			
Course	Course Name		Th	eory Marks		<b>T</b>	Oral 8		
Code		Interna	l Assessm	ent (IA)	End Semester	Work Practical	Total		
		Test I	Test II	Average	Examination				
ELX 701	Instrumentation System Design (ISD)	20	20	20	80			100	

**Rationale** :- For optimum operation & satisfactory performance of any industrial process control system, it is necessary to have a reliably engineered system with a thorough knowledge of the process conditions & requirements as per the system or design specifications. This subject introduces various nuances in the design of instrumentation systems, which is itself a synergy of sensors, transducers, actuators, process control & electronic systems to achieve the desired operation of a plant or the proper control of an industrial process. Students are exposed to principles of designing which enable them to design, build & implement such electronically controlled systems for measurement, signal conditioning & final control.

#### Course Objectives :-

- 1. To learn basic functions & working of pneumatic, hydraulic & electrical components used in process control
- 2. To understand principles of process parameter conversion & transmission in various forms
- 3. To gain familiarity with control system components & their applications in process control
- 4. To study various types of controllers used in process control & their tuning for different applications
- 5. To be aware of recent advances & technological developments in industrial instrumentation & process control

#### Course Outcomes :-

At the end of the course, students should gain the ability to :-

- ELX 701.1 :- Demonstrate the needs of advancement in instrumentation systems
- ELX 701.2 :- Select the proper components for pneumatic & hydraulic systems
- ELX 701.3 :- Choose the transmitter / controller for given process application
- ELX 701.4 :- Analyze the controller parameters for discrete or continuous type
- ELX 701.5 :- Design the controller (electronic) for a given process or application

Modul e No.	Topics	Hour s
1	ACTUATORS & PROCESS CONTROL VALVES	
1.1	Electrical actuators – relays, solenoids & electrical motors (DC, AC & stepper motor)	
1.2	Pneumatic actuators – basic pneumatic system, pneumatic compressors (piston, vane, screw) flapper nozzle, single & double acting cylinder, rotary actuator, filter-regulator-lubricator (FRL)	08
1.3	Hydraulic actuator – hydraulic pumps, control valves types (globe, ball, needle, butterfly, gate, diaphragm & pinch), cavitation & flashing with their remedies, pressure drop across valve & leakage, valve noise, flow characteristics on load changes, control valves parameters, control valves sizing, valve calibration, digital control valves, selecting control valves & applications	
2	DESIGN OF SIGNAL CONDITIONING CIRCUITS	
2.1	Principles of analog & digital signal conditioning – signal level & bias change, linearization, conversion, filtering & impedance matching, concept of loading, comparators & converters	
2.2	Design of operational amplifier based circuits in instrumentation – analysis of voltage divider circuits, bridge circuits, RC filters, inverting & non-inverting amplifier, instrumentation amplifier, V to I & I to V converter, integrator, differentiator & linearization (with numerical examples)	08
2.3	Transmitters – Introduction to telemetry & its basic block diagram, 2 wire, 3 wire & 4 wire transmitters, 4 mA to 20 mA current transmitter, electronic transmitters for temperature, level, pressure & flow, current to pressure (I to P) & pressure to current (P to I) converters	
3	PROCESS CONTROLLER PRINCIPLES	
3.1	Discontinuous controller – two position mode, multi-position mode & floating mode	
3.2	Continuous controller – single mode (P, I & D) & composite mode (PD, PI & PID), split range, auto select, ratio & cascaded controllers, selection criterion of controller for a process mode	08
3.3	Tuning of PID controller – process loop tuning, open loop transient response method, Ziegler – Nichols tuning method, frequency response methods (numerical examples on PID tuning)	
4	PROGRAMMABLE LOGIC CONTROLLERS (PLC)	
4.1	Discrete state process controller – discrete state variables, process specifications & event sequence description	10
4.2	Relay controller & ladder diagram – introduction to relay ladder diagram logic, ladder diagram elements & ladder diagram programming examples	

4.3	PLC – relay sequencers, programmable logic controller design, PLC operation, programming the PLC, PLC software functions (application examples on relay ladder logic programming)	
5	DIGITAL BASED PROCESS CONTROL	
5.1	Data acquisition system (DAS) – objectives, signal conditioning of inputs, single channel DAS, multi-channel DAS, computer based DAS, data logger, difference between DAS & data logger	
5.2	Computer aided process control – architecture, human machine interface (HMI), supervisory control & data acquisition (SCADA), standard interfaces (RS-232C, RS-422A & RS-485)	08
5.3	Supervisory control system (SCS), introduction to the Fieldbus & Profibus process controlled networks, overview of distributed control system (DCS), features & advantages of DCS	
6	CALIBRATION STANDARDS & ADVANCES IN INSTRUMENTATION	
6.1	PC & microcomputer based instrumentation, virtual instrumentation & LabVIEW introduction	
6.2	Calibration of instrumentation systems, representation of instrumentation control process with SAMA & ISA symbols, ISO/IEC 17025 General requirements for calibration standards	06
6.3	Instrumentation standards, ISA S82.01 – Safety Standard for Electrical and Electronic Test, Measuring, Controlling Related Equipment, ISA S84.01 – Application of Safety Instrumented Systems for the Process Industries, ANSI/NEMA 250 – Enclosures for Electrical Equipment	
1 – 6	TOTAL	48

#### **Recommended Books** :-

- 1. Curtis D. Johnson, Process Control Instrumentation Technology, 7th edition, PHI
- 2. S. K. Singh, Industrial Instrumentation & Control, 3rd edition, McGraw Hill
- 3. B.C. Nakra & K. K. Chaudhary, Instrumentation Measurement & Analysis, 3rd edition, McGraw Hill
- 4. Andrew Parr, Pneumatics & Hydraulics, 2nd edition, Jaico Publishing Co.
- 5. B. G. Liptak, Handbook of Process Control & Instrumentation, 4th edition, CRC Press
- 6. William C. Dunn, Fundamentals of Industrial Instrumentation & Process Control, 1st edition, McGraw Hill

**Internal Assessment (IA)** :- Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

#### End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

		Te	aching Sch	eme	Credits Assigned				
Subject Code	Subject Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX702	Power Electronics	04	02		04			04	

Subject Code		ExaminationScheme								
			T	Theory Ma	arks					Total
	Subject Name	Inter	nal asses	sment			Term	Draatiaal	Oral	Total
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	Work	rractical	Orai	Total
ELX702	Power Electronics	20	20	20	80	03				100

#### **\Course Pre-requisite:**

- 1. ENAS
- 2. EDC-1
- **3.** EDC-2

# **Course Objectives:**

- 1. To teach power electronic devices and their characteristics.
- 2. To highlight power electronics based rectifiers, inverters and choppers.

# **Course Outcomes:**

#### After successful completion of the course students will be able to:

- 1. Discuss trade-offs involved in power semiconductor devices.
- 2. Design of triggering, commutation and protection circuits for SCRs.
- 3. Analyse different types of single-phase rectifiers and DC-DC converters.
- 4. Analyse different types of DC-AC converters (inverters).
- 5. Analyse different types of AC Voltage Controllers and Cycloconvertors.

Module	Unit	Contents	Hrs.
No.	No.		
		Power semiconductor devices	
1	1.1	Principle of operation of SCR, static and dynamic characteristics, gate Characteristics,	8
I		Principle of operation, characteristics, ratings and applications of:	
	1.2	TRIAC, DIAC, MOSFET and power BJT. IGBT: basic structure, principle of operation, equivalent circuit, latch-up in IGBT's and V-I characteristics.	
		SCR: Triggering, commutation and Protection Circuits	
2	2.1	Methods of turning ON SCR (types of gate signal), firing circuits (using R, RC, UJT, Ramp and pedestal, inverse cosine),	8
	2.2	Design of commutation circuits,	-
	2.3	Protection of SCR	-
		Single-phase Controlled Rectifiers	
	3.1	Introduction to uncontrolled rectifiers, Half wave controlled rectifiers with R, RL load, effect of free-wheeling diode	-
3	3.2	Full wave fully controlled rectifiers (centre-tapped, bridge configurations), full-wave half controlled (semi-converters) with R, RL load, effect of freewheeling diode and effect of source inductance.	8
	3.3	Calculation of performance parameters, input performance parameters (input power factor, input displacement factor (DF), input current distortion factors (CDF), input current harmonic factor (HF/THD), Crest Factor (CF)), output performance parameters.	-
		Inverters	
	4.1	Introduction to basic and improved series/parallel inverters, limitations.	-
4	4.2	Introduction, principle of operation, performance parameters of Single phase half / full bridge voltage source inverters with R and R-L load,	10
	4.3	Voltage control of single phase inverters using PWM techniques, harmonic neutralization of inverters, applications	-
		DC-DC converters	
5	5.1	Basic principle of step up and step down DC-DC converters, DC-DC switching mode regulators: Buck, Boost, Buck-Boost, Cuk Regulators (CCM mode only)	8
	5.2	Voltage commutated, current commutated and load commutated DC-DC	-

		converters	
	5.3	Applications in SMPS, Battery charging systems.	
		AC Voltage Controllers and Cycloconvertors	
6	6.1	Principle of On-Off control, principle of phase control, single phase bidirectional control with R and RL load	6
	6.2	Introduction, single phase and three phase Cyclo-converters, applications	
		Total	48

#### **Recommended Books:**

- 1. M. H. Rashid, "Power Electronics", Prentice-Hall of India
- 2. Ned Mohan, "Power Electronics", Undeland, Robbins, John Wiley Publication
- 3. P. S. Bhimbra, "Power Electronics", Khanna Publishers, 2012
- 4. M.D. Singh and K. B. Khanchandani, "Power Electronics", Tata McGraw Hill
- 5. Ramamurthy, "Thyristors and Their Applications"
- 6. P. C. Sen, "Modern Power Electronics", Wheeler Publication
- 7. S. Shrivastava, "Power Electronics", Nandu Publication, Mumbai.

#### Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

#### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject	Subject Name			Exa	minatio	n Schem	ie		
Code			The	ory Marks		Term	Practical	Oral	Total
		Inte	Internal Assessment En			Work			
		Test 1	Test	Ave. of	Sem.				
			2	Test 1 and	Exam				
				Test 2					
EXC703	Digital Signal	20	20	20	80				100
	Processing								

#### Prerequisite Courses: Signals and Systems

#### **Course Objectives:**

- 1. To teach the design techniques and performance analysis techniques of digital filters
- 2. To introduce the students to advanced signal processing techniques, digital signal processors and applications

#### **Course Outcomes:**

#### After successful completion of this course students will be able to

- 1. Demonstrate an understanding of the discrete-time Fourier transform and the concept of digital frequency.
- 2. Design FIR and IIR digital filters to meet arbitrary specifications and Develop algorithms for implementation
- 3. Understand the effect of hardware limitations on performance of digital filters
- 4. Use advanced signal processing techniques and digital signal processors in various applications

Module No.	Unit No.	Topics	Hrs.
		Discrete Fourier Transform and Fast Fourier Transform	
1.0	1.1	Definition and Properties of DFT,IDFT, circular convolution of sequences using DFT and IDFT, Relation between Z-transform and DFT Filtering of long data sequences: Overlap Save and Overlap Add Method Computation of DFT	10
	1.2	Fast Fourier transforms(FFT),Radix-2decimationintime and decimation in frequency FFT algorithms, inverse FFT, and Introduction to composite FFT	
		IIR Digital Filters	
	2.1	Types of IIR Filters (Low Pass, High Pass, Band Pass, Band stop and All Pass) Analog filter approximations: Butterworth, Chebyshev I and II	
2.0	2.2	MappingofS-planetoZ-plane, impulse invariance method, bilinear transformation method, Design of IIR digital filters from analog filters with examples	10
	2.3	Analog and digital frequency transformations with design examples	
		FIR Digital Filters	
3.0	3.1	Characteristics of FIR digital filters, Minimum Phase, Maximum Phase, Mixed Phase and Linear Phase Filters Frequency response, location of the zero sof linear phase FIR filters	10

	3.2	Design of FIR filter susing window techniques (Rectangular, Hamming, Hanning,Blackmann, Barlet) Design of FIR filter susing Frequency Sampling technique Comparison of IIR and FIR filters	
		Finite Word Length Effects in Digital Filters	
4.0	4.1	Quantization, truncation and rounding, Effects due to truncation and rounding, Input quantization error, Product quantization error, Co-efficient quantization error, Zero-input limit cycle oscillations, Overflow limit cycle oscillations, Scaling	06
	4.2	Quantization in Floating Point realization of IIR digital filtersFinite word length effects in FIR digital filters	
		Multirate DSPand FilterBanks	
5.0	5.1	Introduction and concept of Multirate Processing, Block Diagram of Decimator and Interpolator, Decimation and Interpolation by Integer numbers Multistage Approach to Sampling rate converters	06
	5.2	Sample rate conversion using Polyphase filter structure, Type I and Type II Polyphase Decomposition	
		DSP Processors and Applications	
6.0	6.1	Introduction to General Purpose and Special Purpose DSP processors, fixed point and floating point DSP processor, Computer architecture for signal processing, Harvard Architecture, Pipelining, multiplier and accumulator(MAC), Special Instructions, Replication, On-chip memory, Extended Parallelism	06
	6.2	General purpose digital signal processors, Selecting digital signal processors, Special purpose DSP hardware	
	6.3	Applications of DSP: Radar Signal Processing and Speech Processing	
	1	Total	48

#### **Text Books**:

1. Emmanuel C. Ifeachor, Barrie W. Jervis, "*Digital Signal Processing*", A Practical Approach by, Pearson Education

2. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015

# **Reference Books:**

- 1. ProakisJ., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education
- 2. Sanjit K. Mitra, Digital Signal Processing A Computer Based Approach edition 4e
- 3. McGraw Hill Education (India) Private Limited
- 4. OppenheimA., SchaferR., BuckJ., "DiscreteTimeSignalProcessing", 2ndEdition, Pearson Education...
- 5. B. VenkataRamaniand, M. Bhaskar, "*Digital Signal Processors, Architecture, Programming and Applications*", Tata McGraw Hill, 2004.
- 6. L.R.RabinerandB.Gold, "Theoryand Applications of Digital Signal Processing", Prentice-HallofIndia, 2006.

# Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

# End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5markswill be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)		Credits Ass	igned	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXDLO7031	NEURAL	4	2		4			04
	NETWORKS							
	& FUZZY							
	LOGIC							

Subject Code	Subject Name				Examinatio	n Schen	ie		
			Th	eory Marks		Term	Practical	Oral	Total
		Internal assessment End			Work				
		Test	Test Test Ave. Of		Sem.	Sem.			
		1	2	Test 1	Exam				
				and Test					
				2					
ELXDLO7031	NEURAL	20	20	20	80	-			100
	NETWORKS								
	& FUZZY								
	LOGIC								

**Pre-requisite** 

- Knowledge of linear algebra, multivariate calculus, and probability theory
- Knowledge of a programming language (MATLAB /C/C ++ recommended)

#### **Course Objectives:**

- To study basics of biological Neural Network.
- To understand the different types of Artificial Neural Networks
- To know the applications of ANN .
- To study fuzzy logic and fuzzy systems.

#### **Course outcomes:**

At the end of completing the course of Neural Networks & Fuzzy Logic, a student will be able to:

- 1. Choose between different types of neural networks
- 2. Design a neural network for a particular application
- **3.** Understand the applications of neural networks
- 4. Appreciate the need for fuzzy logic and control

Module	Contents	Hours
	<b>Introduction:</b> 1.1 Biological neurons, McCulloch and Pitts models <i>of</i> neuron, Types of activation function, Network architectures, Knowledge representation, Hebb net	
1	1.2 Learning processes: Supervised learning, Unsupervised learning and Reinforcement learning	
1	1.3 Learning Rules : Hebbian Learning Rule, Perceptron Learning Rule, Delta Learning Rule, Widrow-Hoff Learning Rule, Correlation Learning Rule, Winner-Take-All Learning Rule	10
	1.4 Applications and scope of Neural Networks	
	Supervised Learning Networks :	
	2.1 Perception Networks – continuous & discrete, Perceptron convergence theorem,	
2	Adaline, Madaline, Method of steepest descent, - least mean square algorithm,	
	Linear & non-linear separable classes & Pattern classes,	12
	2.2 Back Propagation Network,	
	2.3 Radial Basis Function Network.	
	Unsupervised learning network:	
2	3.1 Fixed weights competitive nets,	06
5	3.2 Kohonen Self-organizing Feature Maps, Learning Vector Quantization,	00
	3.3 Adaptive Resonance Theory – 1	
	Associative memory networks:	
	4.1 Introduction, Training algorithms for Pattern Association,	
4	4.2 Auto-associative Memory Network, Hetero-associative Memory Network, Bidirectional Associative Memory,	08
	4.3 Discrete Hopfield Networks.	
	Fuzzy Logic:	
5	5.1 Fuzzy Sets, Fuzzy Relations and Tolerance and Equivalence	12
5	5.2 Fuzzification and Defuzzification	14
	5.3 Fuzzy Controllers	

TOTAL	48	

## **Text- Books:**

- Dr. S. N. Sivanandam, Mrs S.N. Deepa, "Principles of Soft computing", Wiley Publication.
- Jacek M. Zurada, "Introduction to Artificial Neural Systems, Jaico publishing house.

### **Reference books :**

- Simon Haykin, "Neural Network a Comprehensive Foundation", Pearson Education.
- S. Rajsekaran, Vijaylakshmi Pai, "Neural Networks, Fuzzy Logic, and Genetic Algorithms", PHI.
- Thimothy J. Ross, "Fuzzy Logic with Engineering Applications", Wiley Publication.
- Christopher M Bishop, "Neural Networks For Pattern Recognition", Oxford Publication

### Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

### End Semester Examination:

- 1. Question paper will comprise of total 6 questions, each of 20 marks.
- 2. Only 4 questions need to be solved.
- 3. Question number 1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.
- 5. No question should be asked from pre-requisite module

Subject Code	Subject Name	Teach	ing Schem	e (Hrs.)		<b>Credits Ass</b>	igned	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXDLO7032	Advanced	4	2		4			04
	Networking							
	Technologies							

Subject Code	Subject Name				Examinatio	on Schen	ne		
			Theory Marks				Practical	Oral	Total
		Inte	Internal assessment End			Work			
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1	Exam				
				and Test					
				2					
ELXDLO7032	Advanced	20	20	20	80	-			100
	Networking								
	Technologies								

Course Pre-requisite: ELX405 Principles of Communication Engineering ELX602 Computer Communication Network ELXDLO-2 Wireless Communication

#### **Course Objectives:**

The objectives of this course are to:

- 1. Understand the characteristic features of Various Wireless networks
- 2. Understand Optical networking and significance of DWDM.
- 3. Introduce the need for network security and safeguards
- 4. Understand the principles of network management

#### **Course Outcomes:**

#### On successful completion of the course the students will be able to:

- 1. Appreciate the need for Wireless networks and study the IEEE 802.11 Standards
- 2. Comprehend the significance of Asynchronous Transfer Mode(ATM)
- 3. Understand the features of emerging wireless Networks: Bluetooth Networks, ZIGBEE, WSN
- 4. Analyze the importance of Optical networking
- 5. Demonstrate knowledge of network design and security and management
- 6. Understand the concept of Cloud Computing and its applications.

Module	Unit	Topics	Hrs.
No.	No.		
1.		Wireless LAN and WAN technologies	08
	1.1	Introduction to Wireless networks : Infrastructure networks, Ad-hoc networks,	
		IEEE 802.11 architecture and services, Medium Access Control sub-layers, CSMA/CA	
		Physical Layer, 802.11 Security considerations.	
	1.2	Asynchronous Transfer Mode (ATM): Architecture, ATM logical connections, ATM	

		cells, ATM Functional Layers, Congestion control and Quality of service	
2.		Emerging Wireless Technologies	10
	21	Window Dansonnal Ange Natural (WDAN), WDAN 902 15 1 architecture Divets oth	
	2.1	wireless rersonnel Area Network (wPAN): wPAN 802.15.1 arcmeeture, Bluetooth	
		Protocol Stack, Bluetooth Link Types, Bluetooth Security, Network Connection	
		Establishment in Bluetooth, Network Topology in Bluetooth, Bluetooth Usage	
		Models	
		002 15 2 11/ W 1 D 1 002 15 4 7 1 DED	
	2.2	802.15.3- Ultra Wide Band, 802.15.4- Zigbee, RFID	
	2.3	Wireless Sensor Networks: Introduction and Applications, Wireless Sensor Network	
		Model, Sensor Network Protocol Stack,	
3.0		Optical Networking	08
	- 2.1		
	3.1	SONET : SONET/SDH, Architecture, Signal, SONET devices, connections, SONET	
		layers, SONET frames, STS Multiplexing, SONET Networks	
	3.2	DWDM: Frame format, DWDM architecture, Optical Amplifier, Optical cross connect	
		Performance and design considerations	
4.0		Network Design, Security and Management	10
	4.1	3 tier Network design layers: Application layer, Access layer, Backbone layers,	
		Ubiquitous computing and Hierarchical computing	
	4.2	Network Security: Security goal, Security threats, security safeguards, firewall types and design.	
	4.3	Network management definitions, functional areas (FCAPS), SNMP, RMON	
5.0		Routing in the Internet:	06
	5.1	Intra and inter domain Routing, Unicast Routing Protocols: RIP, OSPF, BGP	
	5.2	Multicast Routing Protocols ,Drawbacks of traditional Routing methods	
6.0		Cloud computing:	06
	6.1	Cloud Computing Evolution, Definition, SPI framework of Cloud Computing, Cloud service delivery models,	
	6.2	Cloud deployment models, key drivers to adoption of cloud, impact of cloud computing on	
		users, examples of cloud service providers: Amazon, Google, Microsoft, Salesforce etc.	
		Total	48

#### **Recommended Text Books:**

- 1. Behrouz A. Forouzan, "Data communication and networking ", McGraw Hill Education, Fourth Edition.
- 2. Darren L. Spohn, "Data Network Design", McGraw Hill Education, Third edition
- 3. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 4. Tim Mather , Subra Kumaraswamy & Shahed Latif, "Cloud security & Privacy: an enterprise Perspective", O'Reilly Media Inc.Publishers

#### **Reference Books:**

1. William Stallings, "Wireless Communications and Networks", Pearson Ed., 2nd Edition.

- 2. Vijay Garg ,"Wireless Communication and networking", Morgan Kaufmann Publishers
- 3. Carr and Snyder, "Data communication and network security", McGraw Hill ,1ST edition.
- 4. Upena Dalal & Manoj Shukla, "Wireless Communication and Networks", Oxford Press
- Deven Shah , Ambavade, "Advanced Communication Networking"
   Beherouz A Forouzan , "TCP /IP Protocol Suite" , Tata McGraw Hill Education ,4th edition.

### **Internal Assessment (IA):**

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

### **End Semester Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)		Credits Ass	igned	
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total
ELXDLO7033	Robotics	4	2		4			04

Subject Code	Subject Name		Examination Scheme						
			Th	eory Marks		Term	Practical	Oral	Total
		Internal assessment End			Work				
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1	Exam				
				and Test					
				2					
ELXDLO7033	Robotics	20	20	20	80	-			100

Pre-requisite: Applied Mathematics III, Applied Mathematics IV, Linear Control Systems

#### **Course Objectives:**

- 1. To study basics of robotics
- 2. To familiarize students with kinematics & dynamics of robots
- 3 To familiarize students with Trajectory & task planning of robots.
- 4 To familiarize students with robot vision

#### **Course outcomes:**

#### At the end of completing the course of Robotics, a student will be able to:

- 1. understand the basic concepts of robotics
- 2. perform the kinematic and the dynamic analysis of robots
- 3. perform trajectory and task planning of robots
- 4. describe importance of visionary system in robotic manipulation

Module	Contents	Hours
1	<b>Fundamentals of Robotics:</b> 1.1 Robot Classification, Robot Components, Robot Specification, Joints, Coordinates, Coordinate frames, Workspace, Languages, Applications.	04
2	<ul> <li>Kinematics of Robots:</li> <li>2.1 Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation</li> <li>2.2 Denavit-Hatenberg representation of forward kinematics, Forward and inverse kinematic solutions of three and four axis robot</li> </ul>	10
3	<ul> <li>Velocity Kinematics &amp; Dynamics:</li> <li>3.1 Differential motions and velocities : Differential relationship, Jacobian, Differential motion of a frame and robot, Inverse Jacobian, Singularities,</li> <li>3.2 Dynamic Analysis of Forces : Lagrangian mechanics, Newton Euler formulation, Dynamic equations of two axis robot</li> </ul>	10
4	<b>Trajectory planning:</b> 4.1 Basics of Trajectory planning , Joint-space trajectory planning, Cartesian-space trajectories	08
5	<b>Robot Vision:</b> 5.1 Image representation, Template matching, Polyhedral objects, Shape analysis, Segmentation, Iterative processing, Perspective transform, Camera Calibration	08
6	<b>Task Planning:</b> 6.1 Task level programming, Uncertainty, Configuration Space, Gross motion Planning; Grasp planning, Fine-motion Planning, Simulation of Planer motion, Source and goal scenes, Task planner simulation.	08
	TOTAL	48

Text- Books :

- Robert Shilling, "Fundamentals of Robotics Analysis and contro"l, Prentice Hall of India, 2009
- Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011

**Reference books :** 

- John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control ", Wiley India Pvt. Ltd., 2006
- Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications", McGraw Hill, New York, 2008

# Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

# **End Semester Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme						
		Theor y	Practica l	Tutoria l	Theor y	TW/Practical	Tutoria l	Tota l
ELXDLO70 34	IC Technology	04			04			04

Subject	Subject	Examination Scheme							
Code	Name	Theory Marks Term Practical Oral Tota						Total	
		In as	ternal sessme	ent	End Sem.	Wor k			
		Test 1	Test 2	Avg. of Test 1 and Test 2	Exam				
ELXDL	IC Technology	20	20	20	80				100
O7034									

# **Course Pre-requisite:**

- □ ELX302:Electronic Devices and Circuits I
- □ ELX303:Digital Circuit Design
- □ ELX603:VLSI Design

# **Course Objectives:**

- 1. To provide knowledge of IC fabrication processes and advanced IC technologies.
- 2. To disseminate knowledge about novel VLSI devices and materials.

#### **Course Outcomes:**

# After successful completion of the course student will be able to

- 1. Demonstrate a clear understanding of various MOS fabrication processes & CMOS fabrication flow.
- 2. Design layout of MOS based Circuits.
- 3. Demonstrate a clear understanding of Semiconductor Measurements & Testing.
- 4. Understand advanced technologies, Novel Devices and materials in Modern VLSI Technology.

Module No.	Unit No.	Topics	Hrs.
1.0		Crystal Growth, Wafer preparation and fabrication for VLSI Technology	8
	1.1	Semiconductor Manufacturing: Semiconductor technology trend, Clean rooms, Wafer cleaning and Gettering.	
	1.2	Semiconductor Substrate:	1
		Crystal structure, Crystal defects, Czochralski growth, Float Zone growth, Bridgman growth of GaAs, Wafer Preparation and specifications	
2.0		Fabrication Processes Part 1	12
	2.1	Epitaxy: Classification, Molecular Beam Epitaxy	
	2.2	Silicon Oxidation: Thermal oxidation process, Kinetics of growth, Properties of	]
		Silicon Dioxide, Oxide Quality.	
	2.3	Device Isolation: LOCOS, Shallow Trench Isolation (STI).	-
		Deposition: Physical Vapor Deposition-Evaporation and Sputtering,	
	2.4	Chemical Vapor Deposition: APCVD, LPCVD, PECVD	
	2.4	<b>Diffusion:</b> Nature of diffusion, Diffusion in a concentration gradient, diffusion	1
		Equation, diffusion systems, problems in diffusion.	
	2.5	<b>Ion Implantation:</b> Penetration range-Nuclear& Electronic stopping and Range, implantation damage, Annealing-Rapid thermal annealing, ion implantation systems.	
3.0		Fabrication Process Part 2	12
	3.1	Etching &Lithography:	1
		Etching: Basic concepts and Classification	
		Lithography: Introduction to Lithography process, Types of Photoresist,	
		Types of Lithography: Electron beam, Ion beam and X-ray lithography	
	3.2	<b>Metallization and Contacts:</b> Introduction to Metallization, Schottky contacts and Ohmic contacts.	
	3.3	CMOS Process Flow: N well, P-well and Twin tub, CMOS Latch Up	1
	3.4	Design rules, Layout of MOS based circuits (gates and combinational logic). Buried	ł

		and Butting Contact	
4.0		Measurement and Testing	06
	4.1	Semiconductor Measurements: Conductivity type, Resistivity, Hall Effect	
		Measurements, Drift Mobility,	
	4.2	Testing: Technology trends affecting testing, VLSI testing process and test	
		equipment, test economics and product quality	
		VLSI Technologies	05
	5.1	SOI Technology: SOI fabrication using SIMOX, Bonded SOI and Smart Cut ,PD	
		SOI and FD SOI Device structure and their features	
	5.2	Advanced Technologies: low $\kappa$ and high $\kappa$ , BiCMOS, H $\kappa$ MG Stack, Strained Silicon.	
	5.3	GaAs Technologies: MESFET Technology, MMIC technologies, MODFET	
		Novel Devices and Materials	
	6.1	<b>Multigate Devices:</b> Various multigate device configurations-double gate, triple gate (FinFET) and Gate All Around (Nanowire).	05
		<b>Nanowire:</b> Concept, VLS method of fabrication, Nanowire FET, Types: Horizontal and Vertical Nanowires, III-V compound Materials in Nanowires.	
	6.2	<b>2-D Materials and FET:</b> Graphene& CNT FET, MOS2 and Black Phosphorous.	
			40
		Total	48

#### **Recommended Books**:

- 1. James D. Plummer, Michael D. Deal and Peter B. Griffin, "*Silicon VLSI Technology*", Pearson, Indian Edition.
- 2. Stephen A. Campbell, "*The Science and Engineering of Microelectronic Fabrication*", Oxford University Press, 2nd Edition.
- 3. Sorab K. Gandhi, "VLSI Fabrication Principles", Wiley, Student Edition.
- 4. G. S. May and S. M. Sze, "Fundamentals of Semiconductor Fabrication", Wiley, First Edition.
- 5. Kerry Bernstein and N. J. Rohrer, "SOI Circuit Design Concepts", Kluwer Academic Publishers, 1st edition.

- 6. Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, 1st edition
- 7. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, 1st edition.
- 8. James E. Morris and KrzysztolIniewski, "Nanoelectronic Device ApplicationsHandbook", CRC Press
- 9. Glenn R. Blackwell, "The electronic packaging", CRC Press
- 10. Michael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Testing fordigital, memory and mixed-signal VLSI circuits", Springer

#### Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

#### **End Semester Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Course Code	Course Name	Credits
ILO7011	Product Life Cycle Management	03

# **Objectives:**

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

Outcomes: Learner will be able to...

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Hrs
	Introduction to Product Lifecycle Management (PLM):Product Lifecycle	10
	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of	
	Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM,	
01	Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM	
	Initiative, PLM Applications	
	PLM Strategies: Industrial strategies, Strategy elements, its identification,	
	selection and implementation, Developing PLM Vision and PLM Strategy,	
	Change management for PLM	
	ProductDesign:Product Design and Development Process, Engineering Design,	09
	Organization and Decomposition in Product Design, Typologies of Design Process	
	Models, Reference Model, Product Design in the Context of the Product Development	
	Process, Relation with the Development Process Planning Phase, Relation with the Post	
02	design Planning Phase, Methodological Evolution in Product Design, Concurrent	
02	Engineering, Characteristic Features of Concurrent Engineering, Concurrent	
	Engineering and Life Cycle Approach, New Product Development (NPD) and	
	Strategies, Product Configuration and Variant Management, The Design for X System,	
	Objective Properties and Design for X Tools, Choice of Design for X Tools and Their	
	Use in the Design Process	
	Product Data Management (PDM): Product and Product Data PDM systems	05
----	----------------------------------------------------------------------------------------	----
03	and importance Components of PDM Deason for implementing a PDM systems	00
	and importance, Components of FDW, Reason for implementing a FDW system,	
	financial justification of PDM, barriers to PDM implementation	
	Virtual Product Development Tools:For components, machines, and	05
04	manufacturing plants, 3D CAD systems and realistic rendering techniques,	
	Digital mock-up, Model building, Model analysis, Modeling and simulations in	
	Product Design, Examples/Case studies	
	Integration of Environmental Aspects in Product Design: Sustainable Development,	05
	Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life	
05	Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies	
	into the Design Process, Life Cycle Environmental Strategies and Considerations for	
	Product Design	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of	05
	Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and	
06	Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach,	
	General Framework for LCCA, Evolution of Models for Product Life Cycle Cost	
	Analysis	

#### Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper.Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", TataMcGrawHill,2006,ISBN:0070636265

Course Code	Course Name	Credits
ILO7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hrs
01	<b>Probability theory:</b> Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem.	
	<b>Probability Distributions:</b> Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance.	08
	<b>Measures of Dispersion:</b> Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	
	<b>Reliability Concepts:</b> Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve.	
02	<b>Failure Data Analysis:</b> Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions.	08
	<b>Reliability Hazard Models:</b> Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	
03	<b>System Reliability:</b> System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	<b>Reliability Improvement:</b> Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis.	08

	System Reliability Analysis – Enumeration method, Cut-set method, Success	
	Path method, Decomposition method.	
05	Maintainability and Availability:System downtime, Design for Maintainability:Maintenance requirements, Design methods:Fault Isolation and self-diagnostics, Partsstandardization and Interchangeability, Modularization and Accessibility, Repair VsReplacement.Availability – qualitative aspects.	05
06	<b>Failure Mode, Effects and Criticality Analysis:</b> Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	05

#### Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Imporance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud	6

	computing model.	
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

# Assessment:

## Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs
01	Introduction         1.1 Strategy of Experimentation         1.2 Typical Applications of Experimental Design         1.3 Guidelines for Designing Experiments	06
	1.4 Response Surface Methodology	
02	<ul> <li>Fitting Regression Models</li> <li>2.1 Linear Regression Models</li> <li>2.2 Estimation of the Parameters in Linear Regression Models</li> <li>2.3 Hypothesis Testing in Multiple Regression</li> <li>2.4 Confidence Intervals in Multiple Regression</li> <li>2.5 Prediction of new response observation</li> <li>2.6 Regression model diagnostics</li> <li>2.7 Testing for lack of fit</li> </ul>	08

	Two-Level Factorial Designs and Analysis	
	3.1 The $2^2$ Design	
	3.2 The $2^3$ Design	
	3.2 The Convert ^{2k} Device	
03	3.3 The General ² Design	07
	3.4 A Single Replicate of the $2^{\kappa}$ Design	
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs and Analysis	
	4.1 The One-Half Fraction of the 2 ^k Design	
04	4.2 The One-Quarter Fraction of the 2 ^k Design	
	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
	Conducting Tests	
	5.1 Testing Logistics	
	5.2 Statistical aspects of conducting tests	
05	5.3 Characteristics of good and bad data sets	07
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	
	Taguchi Approach	
06	6.1 Crossed Array Designs and Signal-to-Noise Ratios	0.4
	6.2 Analysis Methods	04
	6.3 Robust design examples	

#### Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Phillip J Ross, "Taguchi Technique for Quality Engineering," McGrawHill
- 7. Madhav S Phadke, "Quality Engineering using Robust Design," Prentice Hall

Course Code	Course Name	Credits
ILO7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs
	<b>Introduction to Operations Research</b> : Introduction, , Structure of the Mathematical Model Limitations of Operations Research	
01	Linear Programming: Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty Cost Method or Big M-method, Two Phase Method, Revised simplex method, <b>Duality</b> , Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	14
	<b>Transportation Problem</b> : Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m	
	Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem,	

	Travelling Salesman Problem	
	<b>Integer Programming Problem</b> : Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms.	
02	Queuing models: queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	05
03	<b>Simulation</b> : Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05
04	<b>Dynamic programming</b> . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
05	<b>Game Theory</b> . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
06	<b>Inventory Models</b> : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	05

## Assessment:

## Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Course Code	Course Name	Credits
ILO7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs
01	<b>Introduction to Cybercrime:</b> Cybercrime definition and origins of the world, Cybercrime andinformation security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	<b>Cyber offenses &amp; Cybercrime:</b> How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, AuthenticationService Security, Attacks on Mobile/Cell Phones, Mobile Devices:Security Implications for Organizations, Organizational Measures forHandling Mobile, Devices-Related Security Issues, OrganizationalSecurity Policies and Measures in Mobile Computing Era, Laptops	9
03	<b>Tools and Methods Used in Cyberline</b> Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace         E-Commerce , The Contract Aspects in Cyber Law ,The Security Aspect of Cyber Law	8

	,The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law , The Criminal Aspect in Cyber Law, Global Trends in Cyber Law , Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking , The Need for an Indian Cyber Law	
05	Indian IT Act. Cyber Crime and Criminal Justice : Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

#### Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination.

# In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication

- 8. Websites for more information is available on : The Information Technology ACT, 2008-TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primerprofessionals-33538

Course Code	Course Name	Credits
ILO7017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents						
01	<ul> <li>Introduction</li> <li>1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.</li> </ul>	03					
02	<ul> <li>Natural Disaster and Manmade disasters:</li> <li>2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion</li> <li>2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.</li> </ul>	09					
03	<ul> <li>Disaster Management, Policy and Administration</li> <li>3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management.</li> </ul>	06					

	3.2 Policy and administration:	
	Importance and principles of disaster management policies, command and co- ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	
	Institutional Framework for Disaster Management in India:	
04	4.1 Importance of public awareness, Preparation and execution of emergency management programme.Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India.Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations.	06
	4.2 Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	
	Financing Relief Measures:	
05	5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams.	09
	5.2 International relief aid agencies and their role in extreme events.	
	Preventive and Mitigation Measures:	
	6.1 Pre-disaster, during disaster and post-disaster measures in some events in general	
06	6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication	06
	6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans.	
	6.4 Do's and don'ts in case of disasters and effective implementation of relief aids.	

## Assessment:

## Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

## **REFERENCES:**

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS -C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO 7018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Hrs
01	<b>Energy Scenario:</b> Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
03	<b>Energy Management and Energy Conservation in Electrical System:</b> Electricity billing, Electrical load management and maximum demand Control;	10

	Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.	
	Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	
04	<b>Energy Management and Energy Conservation in Thermal Systems:</b> Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10
05	<b>Energy Performance Assessment:</b> On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	<b>Energy conservation in Buildings:</b> Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

# Assessment:

## Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course	C N	Teaching Scheme			Credits Assigned			
Code	Course Name	Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXL7 01	Instrumentation System Design Laboratory		02		04			04

Course Code	Course Name	Examination Scheme						
		Theory Marks				Tarres	Oral f	
		Internal Assessment (IA)			End Semester	Work	Practical	Total
		Test I	Test II	Average	Examination			
ELXL7 01	Instrumentation System Design Laboratory					25	25	50

# Term Work :-

At least 06 experiments covering entire syllabus of ELX 701 (Instrumentation System Design) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.

## **Suggested List of Experiments :-**

- 1. Study of pneumatic single acting & double acting cylinder
- 2. Study of hydraulic process control valves
- 3. Design of stepper motor interface & controller
- 4. Design of instrumentation amplifier for variable voltage gain
- 5. Design of signal conditioning circuits for LDR / thermistor / RTD / strain gauge
- 6. Design of linearization circuits for transducers
- 7. Design of temperature P+I+D controller
- 8. Tuning of P+I+D controller using MATLAB / Simulink
- 9. Implementation of PLC ladder diagram for given application
- 10. Study of SCADA & HMI
- 11. Designing of data acquisition system (DAS)
- 12. Simulating a simple process using LabVIEW

Course Code	C N	Tea	<b>Teaching Scheme</b>			Credits Assigned			
	Course Name	Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total	
ELXL70 2	Power Electronics		02		04			04	

		Examination Scheme								
Course	Course Name		The	eory Mark	Tour	Oral &				
Code		Internal Assessment (IA)			End Semester	Work	Practical	Total		
		Test I	Test II	Average	Examination					
ELXL7 02	Power Electronics					25	25	50		

## Term Work :-

At least 06 experiments covering entire syllabus of ELX 702 (Power Electronics) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will

be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

# Suggested List of Experiments

- 1. Characteristics of SCR, DIAC, TRAIC.
- 2. Characteristics of IGBT, MOSFET and Power BJT.
- 3. Firing circuit for SCR using UJT.
- 4. Study of Half wave and Full wave rectifiers using diodes.
- 5. Study of Half wave and Full wave controlled rectifiers.
- 6. Buck converter, Boost converter and Buck-Boost converter.
- 7. Study of Cycloconverter.
- 8. Simulation of single phase Half wave and Full wave rectifier circuit.
- 9. Simulation of controlled rectifier with R and RL load.
- 10. Simulation of controlled rectifier with (i) Source Inductance (ii) Freewheeling diode.

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXL7 03	Digital Signal Processing		02		04			04

Course	Course Name	Examination Scheme								
			The	eory Mark	Taum	Oral 6				
Code		Internal Assessment (IA)			End Semester	Work	Practical	Total		
		Test I	Test II	Average	Examination					
ELXL7 03	Digital Signal Processing					25	25	50		

## Instructions

- 1. Minimum 6 experiments and one course project must be submitted by each student.
- 2. Simulation tools like Matlab/Scilab can be used.
- 3. Processor based experiments/mini projects can be included.
  - The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

## **Tentative List of Experiments:**

- 1. Study of Convolution, Series and Parallel Systems
- 2. Generation of Basic Signals
- 3. Computation of DFT and it's inverse
- 4. Computation of FFT and comparison of frequency response of DFT and FFT
- 5. Computation of DFT
- 6. IIR Butterworth filter design using IIT technique
- 7. IIR Chebyshev filter design using BLT technique
- 8. Design of FIR filter using hamming and hanning window, low pass and high pass filter

Course Code	a N	Teaching Scheme			Credits Assigned			
	Course Name	Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXD OLO70 31	NEURAL NETWORKS & FUZZY LOGIC		02		04			04

			Examination Scheme									
Course	Course Name		The	eory Mark								
Code		Internal Assessment (IA)			End Semester	Term Work	Oral & Practical	Total				
		Test I	Test II	Average	Examination							
ELXD OLO70 31	NEURAL NETWORKS & FUZZY LOGIC					25	25	50				

## Term Work:

The term work shall consist of

- 1. At least *six experiments* using MATLAB Or C/C++ or Java covering the whole of syllabus, duly recorded and graded.
- 2. One seminar and Two assignments to be included covering at least 60% of the syllabus.

The distribution of marks for term work shall be as follows:

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced *The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.* 

## Suggested List of experiments: using C/C++ or Matlab or java

- Activation functions
- McCulloch Pitts Neuron Model
- Hebbian learning
- Single layer perceptron neural network
- Multi-layer perceptron neural network

- Error Back propagation neural network
- Kohonen Self-organizing Feature Maps
- Associative memory network
- Fuzzy relations
- Defuzzification methods

## Suggested List of seminar :

- Classification of upper case and lower case letters.
- Classification of numbers 0-9.
- BPN for training a hidden layer.
- Implement a heteroassociative memory network to implement any pattern.
- Implement discrete Hopfield network for letters A-E.
- Implement BAM for a pattern of 5X3 array.
- Fuzzy Logic controller design washing machine / vehicle speed control.

## **Oral Examination:**

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXLDLO7032	Advanced	-	2		-	01		01		
	Networking									
	Technologies									
	Laboratory									

Subject Code	Subject				Examinatio	n Schen	ie		
	Name	<b>Theory Marks</b>				Term	Practical	Oral	Total
		Internal assessment End			End	Work			
		Test Test Ave. Of			Sem.				
		1 2 Test 1		Exam					
				and Test					
				2					
ELXLDLO7032	Advanced	-	-	-	-	25		25	50
	Networking								
	Technologies								
	Laboratory								

## **Course Objectives:**

Lab session includes **seven experiments plus one presentation** on any one of the suggested topics The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

## **Suggested Experiments:**

- 1. Evaluation of home/campus network
- 2. GSM-GPS protocol implementation
- 3. Bluetooth protocol implementation
- 4. ZigBee protocol implementation
- 5. Wi-Fi protocol implementation
- 6. Study of NMAP
- 7. Study of SNMP
- 8. Study of Ethernet.

## Suggested topics for presentation:

- 1. MANET
- 2. VOFR
- 3. VOIP
- 4. X.25
- 5. Body area network
- 6. RFID
- 7. Web Security
- 8. Compression Techniques
- 9. Security attacks
- 10. NAT
- 11. College campus network

12. Fiber Optics types, advantages disadvantages13. WSN

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory Practical Tutorial			Theory	<b>TW/Practical</b>	Tutorial	Total	
ELXLDLO7033	Robotics	- 2			-	01		01	

Subject Code	Subject		Examination Scheme								
	Name		Th	eory Marks		Term	Practical	Oral	Total		
		Inte	rnal as	sessment	End	Work					
		Test Test Ave. Of			Sem.						
		1	2	Test 1	Exam						
				and Test							
				2							
ELXLDLO7033	Robotics	-	-	-	-	25		25	50		

#### Term Work:

The term work shall consist of

- **3.** At least *eight experiments* using MATLAB / Scilab covering the whole of syllabus, duly recorded and graded.
- 4. *Two assignments* to be included covering at least 60% of the syllabus.

The distribution of marks for term work shall be as follows:

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced *The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.* 

#### Suggested List of experiments: using Matlab / Scilab

- Forward kinematics
- Inverse kinematic
- Dynamic analysis
- Joint-space trajectory
- Cartesian-space trajectory
- Template matching
- Iterative processing
- Segmentation

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total	
ELXLDLO7034	IC	-	2		-	01		01	
	Technology								

Subject Code	Subject				Examinatio	on Scheme				
	Name	Theory Marks				Term	Practical	Oral	Total	
		Internal assessment End				Work				
		Test Test Ave. Of Sem.								
		1 2 Test 1		Exam						
		and Test								
				2						
ELXLDLO7034	IC	-	-	-	-	25		25	50	
	Technology									

## **Course Objectives:**

Lab session includes **seven experiments plus one presentation** on any one of the suggested topics. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

## **Suggested Experiments:**

Following list of experiments covers the complete syllabus prescribed in IC Technology course. It is formulated in such a way that it allows student to explore various process, layout and device simulation tools. Detail analysis of observations should be recorded in the project book. Tools to be used are Microwind, SUPREME, Electric, Visual TCAD, Mentor Graphics Pyxis and tools available on nanohub. Linux based operating system is preferred to do simulations.

1. Draw and simulate layout for the CMOS inverter. Carry out static as well as transient simulation. Analyze CMOS inverter for i)  $(W/L)_{pmos} > (W/L)_{nmos}$  ii)  $(W/L)_{pmos} = (W/L)_{nmos}$  iii)  $(W/L)_{pmos} < (W/L)_{nmos}$ . Do parasitic extraction. Feed these parasitic in circuit simulator and do layout versus schematic verification.

2. Draw and simulate layout for the following circuits. Size them with respect to reference inverter.

a. CMOS NAND

b. CMOS NOR

Also observe the effect of different types of design rules on above circuits and tabulate the comparative results.

[y=

3. Draw and simulate layout for the given equation (each student will get different equation  $\overline{A.B + C.D}$ ) with the following design style

- a. Static CMOS
- b. Transmission gate
- c. Dynamic Logic

4. Draw and simulate layout for 6T SRAM cell. Size the SRAM cell for 1) lowest area 2) high reliability

5. Draw and simulate layout for the following circuits.

a. SR latch

b. D flip Flop

6. Simulate oxidation process with Deal-Grove model for different conditions (e.g. oxidation type, orientation, time, temperature, thickness etc.) and comment on the results obtained.

7. Simulate diffusion process for different conditions (e.g. source, time, temperature, dopant etc.) and comment on the results obtained.

8. Simulate Si PN junction for various structure and environmental conditions and comment on the results obtained. Repeat the entire simulation for Ge diode.

9. Simulate MOS capacitor (Classical Simulation) for single gate device for a typical value of fixed charge density and interface trap charge density in gate insulator. Do the AC analysis and comment on the results obtained.

10. Simulate MOS capacitor (Quantum Simulation) for single gate device for a typical value of fixed charge density and interface trap charge density in gate insulator. Do the AC analysis and comment on the results obtained.

# Suggested topics for presentation:

Presentation on any Novel device or process.

Course Code	Course Name	To (	eaching Sche Contact Hour	me rs)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX801	Internet of Things	04			04			04
ELX 802	Analog and Mixed VLSI Design	04			04			04
ELXDLO804X	Department Level Optional course IV	04			04			04
ILO802X	Institute Level Optional course II#	03			03			03
ELXL801	Internet of Things Lab.		02			01		01
ELXL802	Analog and Mixed VLSI Design Lab.		02			01		01
ELXL803	Project-II		12			06		06
ELXLDLO804 X	Department Level Optional Courses IV Lab.		02			01		01
	TOTAL	15	18		15	9		24

	<b>B.E.</b>	(Electronics	<b>Engineering</b> )	– Semester	VIII
--	-------------	--------------	----------------------	------------	------

		Examination Scheme – Sen				nester VIII			
				Theory					
		Internal Assessment (IA) End				Exam	Term	Oral	
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total
					Exam	on			
					Marks	(Hours			
		20	20	20	0.0	)			100
ELX801	Internet of Things	20	20	20	80	03			100
EL X 002	And a sud Mine d VI CI Davies	20	20	20	00	02			100
ELX 802	Analog and Mixed VLSI Design	20	20	20	80	03			100
	Department Level Optional course								
ELXDLO804X	Ny	20	20	20	80	03			100
	1 v								
11 O802X	Institute Level Ontional course II	20	20	20	80	03			100
1100022	institute Lever Optional course in	20	20	20	00	05			100
ELXL801	ELXL801 Internet of Things Lab						25	25	50
	Analog and Mixed VLSI Design						25	25	50
ELXL802	Lab.						25	25	50
ELXL803	Project-II						100	50	150
ELXLDLO804	Department Level Optional						25	25	50
X	Courses IV Lab.						23	23	50
	Total	80	80	80	320	15	150	150	700

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I*
ELXDLO7031	Neural Network and Fuzzy Logic	ILO7011	Product Lifecycle Management
ELXDLO7032	Advance Networking Technologies	ILO7012	Reliability Engineering
ELXDLO7033	Robotics	ILO7013	Management Information System
ELXDLO7034	Integrated Circuit Technology	ILO7014	Design of Experiments
		ILO7015	Operation Research
		ILO7016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II [#]
	-		
ELXDLO8041	Advanced Power Electronics	ILO8021	Project Management
ELXDLO8042	MEMS Technology	ILO8022	Finance Management
FLXDL08043	Virtual Instrumentation	II 08023	Entrepreneurship Development and Management
LEADECOUTS	virtual instrumentation	1200025	Entrepreneursing Development und Munugement
ELXDLO8044	Digital Image Processing	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		II 09027	IDD and Datanting
		11.08027	IFK and Patenting
		ILO8028	Digital Business Management
		ILO8029	Environmental Management

`Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total	
ELX 801	Internet of Things	4	2		4			04	

#### **B.E.** (Electronics Engineering) – Semester VIII

Subject	Subject Name		Examination Scheme						
Code		Theory Marks				Term	Practical	Oral	Total
		Inte	Internal assessment			Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELX 801	Internet of	20	20	20	80	-			100
	Things								

Course Pre-requisite: ELX 501 :- Micro-controllers and Applications

ELX 601:- Embedded System and RTOS ELX602:- Computer Communication Network ELXDLO-2 Wireless Communication

## **Course Objectives:**

The objectives of this course are to:

- 1. Understand the design features of Internet of Things(IoT)
- 2. Understand importance of data handling in IoT Way.
- 3. Introduce multiple way of data communication and networking.
- 4. Understand design issue in IoT

## **Course Outcomes:**

## On successful completion of the course the students will be able to:

- 1. Understand the concepts of Internet of Things
- 2. Analyze basic web connectivity in IoT
- 3. Understand Data handling in IoT
- 4. Design basic applications based on IoT using specific components

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to IoT	08
	1.1	Introduction;-Defining IoT, Characteristics of IoT, Physical design of IoT, Logical	
		design of IoT, Functional blocks of IoT, Sources of IoT, and M2MCommunication.	
	1.2	Iot and M2m:- IoT/M2M System layers and Design Standardization, Difference	
		between IoT and M2M	
2.		Network & Communication aspects	10

	2.1	Design Principles & Web Connectivity:- Web Communication Protocols for	
		connected devices, Web connectivity using Gateway, SOAP, REST, HTTP, RESTful	
		and WebSockets	
		(Publish –Subscribe),MQTT, AMQP, CoAP Protocols	
	2.2	Internet Connectivity: - Internet connectivity, Internet based communication, IP	
		addressing in IoT, Media Access Control, Application Layer Protocols.	
		LDWAN Fundamentals : LODA NDIST CAT I TE M1 SICEON	
		LPWAN Fundamentals LORA ,NBIOT,CAT LTE MI,SIGFOA	
3.0		IoT Platforms and Design Methodology	08
	3.1	Defining Specifications About:- Purpose & requirements, process, domain model,	
		information model, service, IoT level, Functional view, Operational view, Device and	
		Component Integration, (case studies)	
	3.2	IoT Levels:-IoT Levels and Deployment Templates	
4.0		Data Handling in IoT	10
	4.1	Data Acquiring, Organizing, Processing:- Data acquiring and storage, Organizing	
		the data, Transactions, Business Processes, Integration and Enterprise Systems,	
		Analytics.	
	4.2	Data Collection and Storage:- Cloud Computing Paradigm for Data Collection,	
		storage and computing, Cloud Service Models, Xively Cloud for Io I	
5.0		(AWS, Google APP engine , Dweet. IO, Fifebase)	0(
5.0			UO
	5.1	Exemplary Devices:- Raspberry Pi, R-Pi Interfaces, Programming R-Pi, Sensor Technology,	
		Sensor Data Communication Protocols, RFID, WSN Technology, Intel Galileo	
( 0			0.6
6.0	(1		06
	6.1	Design Layers, complexity, Io1 Applications in Premises, Supply Chain and Customer	
	67	Home Automation Smart Cities Environment Agriculture IoT Printer	
	0.2	Tione Automation, Smart Cittes, Environment, Agriculture, 101 Finiter	
		Total	48
## **Recommended Text Books:**

- 5. ArshdeepBahga and Vijay Madisetti, "Internet of Things: A Hands-on Approach, Universities Press.
- 6. Raj Kamal, "Internet of Things: Architecture and Design Principles", McGraw Hill Education ,First edition
- 7. David Hanes ,Gonzalo salgueiro"IoT Fundamentals Networking Technologies,Protocols and Use Cases for Internet of Things", Cisco Press, Kindle 2017 Edition
- 8. Andrew Minteer ,"Analytics for the Internet of Things(IoT)",Kindle Edition

## **Reference Books:**

- 1. Adrian McEwen, Hakim Cassimally, : Designing the Internet of Things", Paperback, First Edition
- 2. <u>Yashavant Kanetkar</u>, <u>Shrirang Korde</u>:Paperback "21 Internet of Things (IOT) Experiments"
  - a. BPB Publications

# Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of thesyllabus. The average marks of both the tests will be considered as final IA marks.

# **End Semester Examination**:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subjec Name	t	Т	eaching Scl	heme		Credits Assigned						
		Г	heory	Practical	Tutori	al	Theory	y	T/W Practical		Tutorial		Total
ELX802	Analog and Mixed VLSI Design	g I 1	04	02	- 04 -		-		04				
		Exan	nination	Scheme									
		Theo Inter	ry Mark nal Asse	ks essment	End Ex		kam	T					
		Mark	KS		Sem	Dı	Duration		Ferm P		ractical	Ora	Total
		Test 1	Test 2	Average	Exam (Marks)	<b>(H</b>	lrs)	••	work				
ELX802	Analog and Mixed VLSI Design	20	20	20	80		03		-		-	-	100

## **Course Pre-requisite:**

- □ ELX302: Electronic Devices and Circuits I
- □ ELX303: Digital Circuit Design
- □ ELX402: Electronic Devices and Circuits II
- □ ELX504: Design With Linear Integrated Circuits
- □ ELX603: VLSI Design
- □ ELX DLO-3: IC Technology

# **Course Objectives:**

- 1. To teach analysis and design of building blocks of CMOS Analog VLSI Circuits.
- 2. To highlight the issues associated with the CMOS analog VLSI circuit design.
- 3. To emphasize upon the issues related to mixed signal layout design.

# **Course Outcomes:**

# After successful completion of the course student will be able to

- 1. Discuss tradeoffs involved in analog VLSI Circuits.
- 2. Analyze building blocks of CMOS analog VLSI circuits.
- 3. Design building blocks of CMOS analog VLSI circuits
- 4. Carry out verifications of issues involved in analog and mixed signal circuits

Module No	Unit No	Topics	Hrs
		Analog building blocks	
	1.1	Need for CMOS analog and mixed signal designs, MOS Transistor as	
1.0		sampling switch, active resistances, current source and sinks, current	8
1.0		mirror.	0
	1 2	Voltage References: Band Gap References, General Considerations,	
	1.4	Supply-independent biasing, Temperature independent references, PTAT	

		current generation and Constant Gm biasing						
		Amplifier Fundamentals						
		Single Stage Amplifiers: Basic concepts, Gain Bandwidth (GBW),						
	2 1	Common-source stage (with resistive load, diode connected load, current-						
	2.1	source load, triode load, source degeneration), source follower, common-						
		gate stage, cascode stage, folded cascade stage.						
2.0		Differential Amplifiers: Single ended and differential operation, Basic						
2.0	2.2	differential pair, large signal and small signal behaviours, Common-mode	12					
		response, Differential pair with MOS loads.						
		Noise: Statistical Characteristics of Noise, Types of Noise, Representation						
	• •	of Noise in circuits, Noise in Single stage amplifiers (CS, CD, CG stages),						
	2.3	noise in differential pairs, noise bandwidth, noise figure, noise						
		temperature.						
		MOS Operational Amplifiers						
		Stability and Frequency Compensation: General Considerations,						
	3.1	Multipole systems, Phase margin, Frequency compensation, compensation	-					
		of two stage op- amps						
3.0		Op-amp Design: General Considerations, performance parameters, One-	8					
		stage op- amps, Two-stage op-amps, Gain Boosting, Common-mode						
	3.2	teedback, Input range limitations(ICMR), Slew Rate, Power supply						
		rejection, Noise in op-amps. Design of single ended and double ended two						
		stage Op-amps						
-		Mixed Signal Circuits Dasia Concents: AMS design flow, ASIC Full system design Semi-						
	4.1	basic Concepts: AMS design now, ASIC, Full custom design, Semi-						
		custom design, system on Chip, system in package, Haldware software	Q					
4.0		Oscillators: General considerations Ring oscillators IC oscillators	0					
	4.2	<b>Oscillators:</b> General considerations, Ring oscillators, LC oscillato VCO.						
		<b>Phase-Locked Loop:</b> Simple PLL, Charge pump PLL, Non-ideal effects						
	4.3	in PLL, Delay locked loops and applications of PLL in integrated circuits						
		Data Converter Fundamentals						
		Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,						
5.0	5.1	Precision Considerations, Charge injection cancellation, Unity gain buffer,	4					
		Non- inverting amplifier and integrator.	4					
	5.2	Basic CMOS comparator Design, Adaptive biasing, Analog multipliers.						
		Data Converter Fundamentals and Architectures						
		Fundamentals: Analog versus discrete time signals, converting analog						
	6.1	signals to data signals, sample and hold characteristics. DAC						
		specifications, ADC specifications.						
6.0		DAC architectures: Digital input code, resistors string, R-2R ladder	8					
		networks, current steering, charge scaling DACs, Cyclic DAC, pipeline	Ŭ					
	6.2							
		ADC architectures: Flash, Two Step Flash, Pipeline ADC, Integrating						
		IALL'S NUCCESSIVE approximation ALL'S						
			40					

### **Recommended Books**:

- 1. B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 1st Edition.
- 2. R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Simulation", Wiley, Student Edition
- 3. P. E. Allen and D. R. Holberg, "*CMOS Analog Circuit Design*", Oxford University Press, 3rd Edition.
- 4. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, 5th Edition

## Internal Assessment (IA)

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

## **End Semester Examination**:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Г	<b>Teaching Scheme</b>				Credits Assigned						
		Theory	Pra	ctical	Tutoria	Theor	ry	Practic	al Tu	torial		Total	
ELX DLO8041	Advanced Power Electronics	04	(	)2		04						04	
		Exami	Examination Scheme										
Subject	Subject	Theory Marks											
Code	Name	Internal assessment			End	Exam		Term Work	Prac	tical	Oral	Total	
		Test 1	Test 2	Avg ( and ]	of Test 1 Fest 2	Sem. Exam	H	lours					
ELX DLO8041	Advanced Power Electronics	20	20	20		80	0.	3					100

## **Course Pre-requisite:**

- 4. Power Electronics.
- 5. Linear Control System.
- **6.** BEE

# **Course Objectives:**

- 3. To enhance the ideas of students for more complex power electronic system.
- 4. To teach the analytical methods in power electronic systems.
- 5. To expose the students to various applications of power electronics in electronics equipment, drives and non-conventional energy systems.

# **Course Outcomes:**

# After successful completion of the course students will be able to:

- 1. Thoroughly understand the modern methods of analysis and control of power electronic systems.
- 2. Carry out the theoretical analysis of the power electronic systems from the 'Systems Theory' point of view.
- 3. Appreciate the ubiquity of power electronic systems in engineering fields.
- 4. Simulate and analyse power electronic systems.

Module No.	Unit No.	Contents	Hrs.
1		Three-phase Rectifiers	8
	1.1	3-phase half-wave and full-wave controlled rectifiers with R and RL load, Effect of source inductance,	
	1.2	Distortion in line current, calculation of performance parameters.	
2		Three-phase inverters and control	8
	2.1	Three phase bridge inverters (120° and 180° conduction mode) with R and RL load	
	2.2	PWM for 3-phase voltage source inverters, Space Vector Modulation (SVM) technique for 3-phase voltage source inverters, hysteresis control.	
3		DC-DC Converters	10
	3.1	Average model, linearized and transfer function models, state-space average models of basic buck, boost and buck-boost converters.	
	3.2	Feedback control of these converters (PI and PID).	
4		Power Electronic Applications in DC Drives	8
	4.1	Introduction to DC motors, speed control of DC motor, drives with semi converters, full converters and dual converters.	
	4.2	Chopper-based drive.	
	4.3	Electric braking of DC motors.	
5		Power Electronic Applications in AC Drives	10
	5.1	Introduction to three-phase induction motor, speed control methods for three-phase induction motor :	
		i) Stator voltage	
		ii) Variable frequency	
		iii) Rotor resistance	
		iv) V/f control	
		v) Slip power recovery schemes	
6		Power Electronic Applications	4
	6.1	Induction heating, dielectric heating, solid state relays,	

6.2	Energy conversion interface in renewable energy system.	
	Total	48

#### **Recommended Books:**

- 1. M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, 3rd Edition.
- 2. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2nd Edition.
- 3. Mohan, Undeland and Robbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), 2nd Edition.
- 4. P. S. Bimbhra, Power Electronics, Khanna Publishers, 2012.
- 5. M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd Edition.
- 6. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, 2002.

## Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

## **End Semester Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Г	<b>Teaching Scheme</b>				Credits Assigned									
		Theory	Pra	ctical	Tutoria	Theor	ry	Practic	al Tu	torial		Tota	Total			
ELX DLO8042	MEMS Technology	04		02		04						04				
		Exami	nation	Schen	ne			I								
Subject	Subject	Theory	y Marl	KS												
Code	Name	Internal assessment				End	Exam		Term Work	Prac	Practical		Total			
		Test 1	Test 2	Avg of and T	of Test 1 Test 2	sem. Exam	а Н	uration lours				ıl Oral				
ELX DLO8042	MEMS Technology	20	20	20		80	0.	3					100			

# Course Pre –requisite: VLSI Design an IC Technology

## **Course Objectives:**

- 1. To provide knowledge of MEMS processing steps and processing modules
- 2. To provide knowledge of MEMS Materials with respect to applications.
- 3. To demonstrate the use of semiconductor based processing modules used in the fabrication of variety of sensors and actuators (e.g. pressure sensors, accelerometers, etc.) at the micro-scale.
- 4. To provide an understanding of basic design and operation of MEMS sensors, actuators and structures.

## **Course Outcomes:**

- 1. Understand the underlying fundamental principles of MEMS devices including physical operation and material properties.
- 2. Design and simulate MEMS devices using standard simulation tools.
- 3. Develop different concepts of micro system sensors and actuators for real-world applications.
- 4. Understand the rudiments of Micro-fabrication techniques.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to MEMS	4
	1.1	Introduction to MEMS, Comparison with Micro Electronics Technology,	
	1.2	Real world examples (Air-Bag, DMD, Pressure Sensors), MEMS Challenges, MEMS Sensors in Internet of Things (IoT), Bio-medical applications	
2		MEMS Materials and Their Properties	8
	2.1	Materials (eg. Si, SiO ₂ , SiN, SiC, Cr, Au, Al, Ti, SU8, PMMA, Pt)	
	2.2	Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure.	
3		MEMS Sensors, Actuators and Structures	8
	3.1	MEMS Sensing (Capacitive, Piezo electric Piezo resistive)	
	3.2	Micro Actuation Techniques (Thermal, Piezo electric, Electro static, Shape Memory Alloys, LORENTZ FORCE ACTUATION), Micro Grippers, Micro Gears, Micro Motors, Micro Valves, Micro Pumps.	
4		MEMS Fab Processes	10
	4.1	MEMS Processes & Process parameters: Bulk & Surface Micromachining, High Aspect Ratio Micro	
	4.2	Machining (LIGA, Laser), X-Ray Lithography, Photolithography, PVD techniques, Wet, Dry, Plasma	
	4.3	etching, DRIE, Etch Stop Techniques. Die, Wire & Wafer Bonding, Dicing, Packaging(with Metal	
5		MEMS Devices	12
	5.1	Architecture, working and basic behaviour of Cantilevers, Micro heaters, Accelerometers, Pressure Sensor types, Micromirrors in DMD, Inkjet printer- head. Steps involved in Fabricating above devices	
6		MEMS Device Characterization	6

1	Total	48
6.2	MEMS Failure Mechanisms and Reliability.	
6.1	Piezo-resistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, & importance of these measurements in studying device behavior	

## **Recommended Books:**

- 1. MEMS and MICROSYSTEMS Design and Manufacture by Tai Ran Hsu : McGraw Hill Education
- 2. An Introduction to Micro-electromechanical Systems Engineering; 2nd Ed by N. Maluf, K Williams; Publisher: Artech House Inc
- 3. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill
- 4. Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- 5. Micro-system Design by S. Senturia; Publisher: Springer
- 6. Analysis and Design Principles of MEMS Devices MinhangBao; Publisher: Elsevier Science
- 7. Fundamentals of Micro-fabrication by M. Madou; Publisher: CRC Press; 2 edition
- 8. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

## Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

# **End Semester Examination**:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course	Course Name	Te	aching Sche	me		Credits A	ssigned	
Code		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total
ELXDLO 8043	Virtual Instrumentation	04			04			04

		Examination Scheme									
Course	Course Name		Th	eory Marks	Tarres	Oral 8					
Code		Interna	ıl Assessm	ent (IA)	End Semester	Work	Practical	Total			
		Test I	Test II	Average	Examination						
ELXDL O8043	Virtual Instrumentation	20	20	20	80	-	-	100			

**<u>Rationale</u>** :- Virtual instrumentation combines mainstream commercial technologies such as the PC, with flexible software and a wide variety of measurement hardware, so one can create user-defined systems that meet their exact application needs. Virtual instrumentation has led to a simpler way of looking at measurement systems. Instead of using several stand-alone instruments for multiple measurement types and performing rudimentary analysis by hand, engineers now can quickly and cost-effectively create a system equipped with analysis software and a single measurement device that has the capabilities of a multitude of instruments for various applications & measurements.

# Course Objectives :-

- 1. To understand virtual instrumentation (VI) & to realize its architecture
- 2. To familiarize with VI software & learn programming in VI
- 3. To study various instruments interfacing & data acquisition methods
- 4. To understand various analysis tools & develop programs for different measurement applications

## Course Outcomes :-

At the end of the course, students should gain the ability to :-

- **CO-1** :- Explain the concepts of virtual instrumentation
- **CO-2** :- Select the proper data acquisition hardware
- **CO-3 :-** Configure the data acquisition hardware using LabVIEW
- **CO-4** :- Use LabVIEW to interface related hardware like transducers
- CO-5 :- Design virtual instruments for practical applications

Modul e No.	Topics	Hour s
1	INTRODUCTION TO VIRTUAL INSTRUMENTATION (VI)	
1.1	Historical perspective – Need for VI – Advantages of VI – Definition of VI – Block diagram & architecture of VI – Data flow techniques – Graphical programming in data flow – Comparison with conventional programming	06
2	PROGRAMMING TECHNIQUES	
2.1	VI & sub-VI – Loops & charts – Arrays – Clusters – Graphs – Case & sequence structures – Formula nodes – Local & global variables – String & files inputs	08
3	APPLICATION DEVELOPMENT SOFTWARE (LabVIEW)	
3.1	Creating virtual instrument in LabVIEW – Implementing dataflow programming in LabVIEW – VI, sub-VI & modular code creation in LabVIEW – Arrays & file I/O in LabVIEW – Textual math integration in LabVIEW – Interfacing external instruments to PC using LabVIEW	10
4	DATA ACQUISITION BASICS	
4.1	Digital I/O – Counters & timers – PC hardware structure – Timing – Interrupts – DMA – Software & hardware installation – IEEE GPIB 488 concepts – Embedded system buses – PCI – EISA – CPCI	08
5	COMMON INSTRUMENT INTERFACES	
5.1	Current loop – RS 232C / RS 485 – Interface basics – USB – PCMCIA – VXI – SCXI – PXI – Networking basics for office & industrial application VISA & IVI – Image acquisition & process – Motion control – Digital multimeter (DMM) – Waveform generator	08
6	USING ANALYSIS TOOLS & APPLICATION OF VI	
6.1	Fourier transform – Power spectrum – Correlation method – Windowing & filtering – Pressure control system – Flow control system – Level control system – Temperature control system – Motion control employing stepper motor – PID controller toolbox	08
1-6	TOTAL	48

# **<u>Recommended Books</u>** :-

1. Dr. Sumathi S. & Surekha P, LabVIEW Based Advanced Instrumentation System, PHI, 2nd edition (2007)

Cary Johnson, LabVIEW Graphical Programming, McGraw Hill, 2nd edition (2006)
 Lisa K. Wells & Jeffrey Travis, LabVIEW for Everyone, PHI, 3rd edition (2009)

4. Robert H. Bishop, Learning with LabVIEW 7 Express, Pearson Education, 1st edition (2005)
5. Jovitha Jerome, Virtual Instrumentation using LabVIEW, PHI, 2nd edition (2010)

#### Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

## End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course Code		Teaching Scheme         Credits				Credits A	ssigned		
	Course Name	Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total	
ELXDLO 8044	Digital Image Processing	04			04			04	

				Ex	amination Schem	le			
Course Code	Course Name	Theory Marks					Oral 8		
		Internal Assessment (IA)			End Semester	Vork	Practical	Total	
		Test I	Test II	Average	Examination				
ELXDL O 8044	Digital Image Processing	20	20	20	80	-	-	100	

## **Course Pre-requisite:**

- □ Applied Mathematics
- □ Signals and Systems

# **Course Objectives:**

- 1. To learn the fundamental concepts of Digital Image Processing through basic spatial and frequency domain techniques.
- 2. To learn Image Compression and Decompression Techniques and compression standards.

## **Course Outcomes:**

## After successful completion of the course student will be able to

- 1. Understand the fundamentals of Digital Image representation and simple pixel relations.
- 2. Explain spatial domain and frequency domain techniques for digital image enhancement.
- 3. Perform segmentation and morphological operations.
- 4. Apply compression and decompression techniques to different digital images.

Module No.	Unit No.	Topics	Hrs.
		Digital Image Processing Fundamentals	
	1.1	Introduction: Background, Representation of a Digital Image, Fundamental Steps in Image Processing, Elements of a Digital Image Processing System	-
1		<b>Digital Image Fundamentals:</b> Elements of Visual Perception, A Simple Image	
1	1.2	Model, Two dimensional Sampling and Quantization, Tonal and Spatial Resolutions, Some Basic Relationships between Pixels,	04
		Image File Formats : BMP, TIFF and JPEG.	
		Color Models (RGB, HSI, YUV)	
		Image Enhancement in Spatial Domain	
2		Enhancement in the spatial domain: Some Simple Intensity Transformations,	08
2	2.1	Histogram Processing, Image Subtraction, Image Averaging,	08
		Spatial domain filters: Smoothing Filters, Sharpening Filters, High boost filter	-
		Image Segmentation and Representation	
	3.1	Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding,	-
3		Region based Segmentation, Split and Merge Technique	08
		Image Representation and Description, Chain Code, Polygonal Representation,	-
	3.2	Shape Number, Two Dimensional Moments.	-
		Binary Image Processing	
4	4 1	Binary Morphological Operators, Dilation and Erosion, Opening and Closing, Hit-or- Miss Transformation, Boundary Extraction,	06
	4.1	Region Filling, Thinning and Thickening, Medial Axis Transform, Connected Component Labeling	-
		Image Transforms and frequency domain processing	
5	5.1	Introduction to 2 Dimensional Fourier Transform, Discrete Fourier Transform, Properties of the Two-Dimensional Fourier Transform, Fast Fourier Transform(FFT), Computation of 2 DFFT	12
	5.2	Discrete Hadamard Transform(DHT), Fast Hadamard Transform(FHT), Discrete	1

		Cosine Transform(DCT), Introduction to Discrete Wavelet Transform (DWT)	
	5.3	Enhancement in the frequency domain: Frequency Domain Filtering Lowpass Filtering, Highpass Filtering, Homomorphic Filtering, Generation of Spatial Masks from Frequency Domain Specifications	
		Image Compression:	
	6.1	Fundamentals : Coding Redundancy, Interpixel Redundancy, Psycho visual	
		Redundancy	
6		Image Compression Models : The Source Encoder and Decoder, Lossless	10
	6.2	Compression Techniques : Run Length Coding, Arithmetic Coding, Huffman	
		Coding, Differential PCM,	-
	6.3	Lossy Compression Techniques: Predictive Coding, Delta modulation, Improved Gray Scale Quantization, Transform Coding, JPEG, MPEG-1., Fidelity Criteria.	
Total	I		48

## Text Books:

- 1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- 2. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

## **Reference Books:**

- 1. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- Milan Sonka, Vaclay Hlavac, and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Second Edition, Thomson Learning, 2001
   William K. Pratt, "Digital Image Processing", Third Edition, John Wiley & Sons, Inc., 2001 Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

# **End Semester Examination :-**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

e Code	Course Name	Credits
ILO8021	Project Management	03

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	<ul> <li>Project Management Foundation:</li> <li>Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical &amp; atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).</li> </ul>	5
02	<b>Initiating Projects:</b> How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
03	<ul> <li>Project Planning and Scheduling:</li> <li>Work Breakdown structure (WBS) and linear responsibility chart, Interface</li> <li>Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM,</li> </ul>	8

	GANTT chart. Introduction to Project Management Information System (PMIS).	
04	Planning Projects:Crashing project time, Resource loading and leveling, Goldratt's critical chain, ProjectStakeholders and Communication plan.Risk Management in projects: Risk management planning, Risk identification and riskregister. Qualitative and quantitative risk assessment, Probability and impact matrix.Risk response strategies for positive and negative risks	6
05	<ul> <li>5.1 Executing Projects:</li> <li>Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects.</li> <li>Team management, communication and project meetings.</li> <li>5.2 Monitoring and Controlling Projects:</li> <li>Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit.</li> <li>5.3 Project Contracting</li> <li>Project procurement management, contracting and outsourcing,</li> </ul>	8
06	<ul> <li>6.1 Project Leadership and Ethics: Introduction to project leadership, ethics in projects. Multicultural and virtual projects.</li> <li>6.2 Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.</li> </ul>	6

#### Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

## **REFERENCES:**

- Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Course Code	Course Name	Credits
ILO8022	Finance Management	03

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	<b>Overview of Indian Financial System:</b> Characteristics, Components and Functions of Financial System.	
	Financial Instruments: Meaning, Characteristics and Classification of Basic Financial	
01	Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills.	06
	<b>Financial Markets:</b> Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market	
	<b>Financial Institutions:</b> Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected	
	Returns of a Single Security and a Two-security Portfolio; Measurement of Historical	
02	Risk and Expected Risk of a Single Security and a Two-security Portiolio.	06
	Due: Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due: Continuous	
	Compounding and Continuous Discounting.	
	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of	
03	Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.	09
	Financial Ratio Analysis: Overview of Financial Statements-Balance Sheet, Profit	
	and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis;	

	Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure	
	Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital	
	Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return,	
	Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index Internal Pate of Pature (IPP), and Madified Internal Pate of Pature (MIPP)	
04	Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)	10
	Working Capital Management: Concepts of Meaning Working Capital; Importance of	10
	Working Capital Management; Factors Affecting an Entity's Working Capital Needs;	
	Estimation of Working Capital Requirements; Management of Inventories;	
	Management of Receivables; and Management of Cash and Marketable Securities.	
	Sources of Finance: Long Term Sources-Equity, Debt, and Hybrids; Mezzanine	
	Finance; Sources of Short Term Finance-Trade Credit, Bank Finance, Commercial	
	Paper; Project Finance.	
05	Canital Structure: Factors Affecting an Entity's Canital Structure: Overview of	05
	Capital Structure Theories and Approaches— Net Income Approach. Net Operating	
	Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation	
	between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
	Dividend Balian Maning and Importance of Dividend Balian Easters Affecting on	
06	Entity's Dividend Decision: Overview of Dividend Policy Theories and Approaches	03
50	Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	00

# Assessment:

# Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

# **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

#### **REFERENCES:**

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
   Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education,
- Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Credits
ILO8023	Enterpreneurship Development and Management	03

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
01	<ul> <li>Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership</li> <li>Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship</li> </ul>	04
02	<ul> <li>Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur</li> <li>Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations</li> </ul>	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	<b>Indian Environment for Entrepreneurship:</b> key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc.,	08

	Public private partnerships, National Skill development Mission, Credit Guarantee	
	Fund, PMEGP, discussions, group exercises etc	
05	<b>Effective Management of Business:</b> Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

#### Assessment: Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

## **REFERENCES:**

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Credits
ILO8024	Human Resource Management	03

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM.
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs
01	<ul> <li>Introduction to HR</li> <li>Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions.</li> <li>Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues.</li> </ul>	5
02	<ul> <li>Organizational Behavior (OB)</li> <li>Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues</li> <li>Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness</li> </ul>	7
	• Perception: Attitude and Value, Effect of perception on Individual Decision-	

		making, Attitude and Behavior.	
		• Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor);	
		• Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team.	
		• Case study	
ſ		Organizational Structure & Design	
	03	<ul> <li>Structure, size, technology, Environment of organization; Organizational Roles &amp; conflicts: Concept of roles; role dynamics; role conflicts and stress.</li> </ul>	6
	05	• Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership.	0
		• Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	
ſ		Human resource Planning	
	04	• Recruitment and Selection process, Job-enrichment, Empowerment - Job- Satisfaction, employee morale.	5
		• Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning.	
L		Training & Development: Identification of Training Needs, Training Methods	
		Emerging Trends in HR	
	05	• Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development , managing processes & transformation in HR. Organizational Change, Culture, Environment	6
		• Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	
ľ		HR & MIS	
		Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries	10
	06	Strategic HRM	10
		Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals	
1			

Labor Laws & Industrial Relations	
Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	

# Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

## **REFERENCES:**

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
ILO8025	Professional Ethics and Corporat Social Responsibility (CSR)	03

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in	
01	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and	04
	Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition;	
	Oligopolistic Competition; Oligopolies and Public Policy	
02		08
	Professional Ethics and the Environment: Dimensions of Pollution and Resource	
	Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	
	Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising	
03	Ethics; Consumer Privacy	06
05		00
	<b>Professional Ethics of Job Discrimination:</b> Nature of Job Discrimination; Extent of	
	Discrimination; Reservation of Jobs.	
	Introduction to Corporate Social Responsibility: Potential Business Benefits-Triple	
	bottom line, Human resources, Risk management, Supplier relations; Criticisms and	
04	concerns—Nature of business; Motives; Misdirection.	05
	Trainstant of Comparets Special Beenengibility in India	
	real real of the social responsionity in mula	
05	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	08

	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India,	
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
	Corporate Social Responsibility in Globalizing India: Corporate Social	
06	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs,	08
	Government of India, Legal Aspects of Corporate Social Responsibility-Companies	
	Act, 2013.	

# Assessment:

## Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

## **REFERENCES:**

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by BidyutChakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
ILO8026	Research Methodology	03

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
	<ul> <li>Introduction and Basic Research Concepts</li> <li>1.1 Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle.Research methods vs Methodology</li> </ul>	
01	<ul> <li>1.2 Need of Research in Business and Social Sciences</li> <li>1.3 Objectives of Research</li> <li>1.4 Issues and Problems in Research</li> </ul>	09
02	<ul> <li>1.5 Characteristics of Research: Systematic, Valid, Verifiable, Empirical and Critical</li> <li>Types of Research</li> <li>2.1. Basic Research</li> <li>2.2. Applied Research</li> <li>2.3. Descriptive Research</li> <li>2.4. Analytical Research</li> <li>2.5. Empirical Research</li> <li>2.6 Qualitative and Quantitative Approaches</li> </ul>	07

	Research Design and Sample Design		
03	<b>3.1</b> Research Design – Meaning, Types and Significance	07	
	<b>3.2</b> Sample Design – Meaning and Significance Essentials of a good sampling Stages in		
	Sample Design Sampling methods/techniques Sampling Errors		
	Research Methodology		
	4.1 Meaning of Research Methodology		
	<b>4.2</b> . Stages in Scientific Research Process:		
	a. Identification and Selection of Research Problem		
	<b>b.</b> Formulation of Research Problem		
	c. Review of Literature		
04	d. Formulation of Hypothesis	08	
	e. Formulation of research Design		
	f. Sample Design		
	g. Data Collection		
	h. Data Analysis		
	i. Hypothesis testing and Interpretation of Data		
	j. Preparation of Research Report		
	Formulating Research Problem		
05	5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of	04	
	data, Generalization and Interpretation of analysis		
	Outcome of Research		
06	6.1 Preparation of the report on conclusion reached		
	6.2 Validity Testing & Ethical Issues	04	
	6.3 Suggestions and Recommendation		

# Assessment:

## Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

## **REFERENCES:**

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO8027	IPR and Patenting	03

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr
01	<ul> <li>Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc.</li> <li>Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development</li> </ul>	05
02	<ul> <li>Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active in IPR enforcement</li> <li>Indian Scenario of IPR:Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc.</li> </ul>	07
03	<b>Emerging Issues in IPR:</b> Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	05
04	<b>Basics of Patents:</b> Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method	07

	of getting a patent	
05	<b>Patent Rules:</b> Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	<ul> <li>Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement</li> <li>Patent databases: Important websites, Searching international databases</li> </ul>	07

## Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignments on complete syllabus or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

#### **REFERENCE BOOKS:**

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books

- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Credits
ILO8028	Digital Business Management	03

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: The learner will be able to .....

- Identify drivers of digital business
   Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
1	<ul> <li>Introduction to Digital Business-</li> <li>Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts</li> <li>Difference between physical economy and digital economy,</li> <li>Drivers of digital business- Big Data &amp; Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services)</li> <li>Opportunities and Challenges in Digital Business,</li> </ul>	09
2	<ul> <li>Overview of E-Commerce</li> <li>E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement</li> <li>B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals</li> <li>Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing</li> <li>EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC</li> </ul>	06
3	Digital Business Support services:       ERP as e –business backbone, knowledge         Tope Apps, Information and referral system         Application Development:       Building Digital business Applications and Infrastructure	06
---	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06
5	<ul> <li>E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy,</li> <li>E-business strategy into Action, challenges and E-Transition</li> <li>(Process of Digital Transformation)</li> </ul>	04
6	<b>Materializing e-business: From Idea to Realization</b> -Business plan preparation <b>Case Studies and presentations</b>	08

# Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

# **References:**

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u>OECD Publishing

Course Code	Course Name	Credits
ILO8029	Environmental Management	03

### **Objectives:**

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10
02	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man- made disasters, Atomic/Biomedical hazards, etc.	06
03	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05
06	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

# Assessment:

#### Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

#### **REFERENCES:**

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total	
ELXL 801	Internet of Things Laboratory	-	2		-	01		01	

Subject	Subject Name				Examination	n Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.				Work					
		Test 1 Test Ave. Of			Exam						
		2 Test 1 and									
				Test 2							
ELXL 801	Internet of	-	-	-	-	25		25	50		
	Things										
	Laboratory										

### **Course Objectives:**

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

### **Suggested Experiments:**

### (Programming using C, Embedded C, Pyhton is to be encouraged)

- 1. Minimum two Experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for data handling and storage.
- 2. Minimum three experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for interfacing various sensors and communicating data using Internet using various Protocols.
- 3. Minimum two experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) and wireless communication protocol (802.11 and 802.14.5 IEEE standard)
- 4. Minimum one experiment using Cloud Storage.

### Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total	
ELXL 802	Analog and Mixed VLSI Design	-	2		-	01		01	

Subject	Subject Name				Examinatio	n Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.			Work						
		Test 1	Test 1 Test Ave. Of								
		2 Test 1 and									
				Test 2							
ELXL 802	Analog and	-	-	-	-	25		25	50		
	Mixed VLSI										
	Design										

### **Course Objectives:**

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

### **Suggested Experiments:**

Use of Online Tools to study analog VLSI circuits

- 2. Analysis of MOSFETs for analog performance
- 3. Design and simulate various types of current mirror circuits
- 4. Design and simulate various common source amplifier circuits
- 5. Design and simulate various types of single stage amplifiers
- 6. Design and simulate differential amplifier
- 7. Design and simulate operational tran-sconductance amplifier
- 8. Design and simulate switch capacitor circuits
- 9. Design and simulate various types of oscillators
- 10. Design and simulate mixed mode circuit
- 11. Generate layout for the simple and cascode current mirror
- 12. Generate layout for common source amplifier
- 13. Generate layout for the differential amplifier

14. Generate layout for the Oscillator

15. Generate layout for Phase Detector

### Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit proper report covering the latest advances in the field of Mixed VLSI Design.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total	
ELXDLO	Advanced	-	2		-	01		01	
8041	Power								
	Electronics								
	Lab.								

Subject	Subject Name		Examination Scheme							
Code			T	heory Marks		Term	Practical	Oral	Total	
		Inte	rnal as	sessment	End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2 Test 1 and							
				Test 2						
ELXDLO	Advanced	-	-	-	-	25		25	50	
8041	Power									
	Electronics									
	Lab.									

### **Course Objectives:**

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

### **Suggested Experiments:**

- 1. Single Phase Full Controlled Bridge Rectifier.
- 2. Speed control of Separately excited DC motor using Armature Voltage Control
- 3. Speed control of 3-phase Induction Motor using V/F control.
- 4. Simulation of 3-phase fully controlled Bridge rectifier with R and RL load.
- 5. Simulation of 1-phase fully controlled Bridge rectifier and study of various parameters.
- 6. Simulation of 1-phase Inverter and study of various Performance parameters.
- 7. Simulation of SVM Inverter.
- 8. Simulation of Closed loop dc-dc converter
- 9. Study High Frequency Induction heating & Dielectric heating.

10. Study of operation and control of solid state relays.

#### Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total	
ELXDLO	MEMS	-	2		-	01		01	
8042	Technology								
	Lab.								

Subject	Subject Name		Examination Scheme								
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.									
		Test 1 Test Ave. Of			Exam						
		2 Test 1 and									
				Test 2							
ELXDLO	MEMS	-	-	-	-	25		25	50		
8042	Technology										
	Lab.										

### **Course Objectives:**

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

#### **Suggested Experiments:**

- 1. Design electro-statically actuated cantilever
- 2. Design bimorph cantilever which act as pressure sensor.
- 3. Dynamic analysis of Beam
- 4. Find the tip deflection of the cantilever with different types of load
- 5. Find the tip deflection of the cantilever in sweep analysis
- 6. Model and simulate Electro-mechanical actuator. Do dc and transient analysis

7. Design the geometry of MEMS and find performance characteristics such as resonant frequency, deflection per voltage or temperature

- 8. Simulate the harvested electrical power from mechanical vibrations using piezoelectric cantilever beam
- 9. Model and simulate of accelerometer
- 10. Case study of MEMS based device

# Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering fabrication issues, materials, characterization and applications of the MEMS devices.

Course	Course Name			cheme		Credits Assigned						
Code	Course Name	Theory	Practic	al Tutoria l	¹ Theory	TW/Practica l	¹ Tutorial	Total				
ELXDL O8043	Virtual Instrumentation Laboratory		02		04			04				
			Examination Scheme									
Course	Course Name		Th	eory Marks	T							
Code		Interna	l Assessm	ent (IA)	End Semeste	er Work	Oral & Practical	Total				
		Test I	Test II	Average	Exam							
ELXDL O8043	Virtual Instrumentatio n					25	25	50				
	Laboratory											

### Term Work :-

At least 6 experiments covering entire syllabus of ELXDLO8043 (Virtual Instrumentation) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Virtual Instrumentation need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

### **Suggested List of Experiments :-**

- 1. Verification of arithmetic operations
- 2. Verification of Boolean Expressions / half-adder & full-adder
- 3. Implementation of array functions
- 4. Program to convert Celsius into Fahrenheit & vice-versa
- 5. Program for implementing seven segment display
- 6. Program for calculating body mass index (BMI) using cluster

- 7. Program to control temperature using thermistor / RTD & DAQ
- 8. Program to control liquid flow using DAQ
- 9. Program to control liquid level using DAQ
- 10. Program to control pressure using DAQ
- 11. Program for DC motor speed control using PID toolbox

R2016 University	of Mumbai B	<b>B.E. Electronics</b>	Engineering]
- ·			

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practica	al Tutoria l	¹ Theory	TW/Practica l	Tutorial	Total
ELXDL O8044	Digital Image Processing		02		04			04
	Course Name	Examination Scheme						
Course Code		Theory Marks				0.14		
		Internal Assessment (IA)			End Semeste	er Vork	Oral & Practical	Total
		Test I	Test II	Average	Exam			
ELXDL O8044	Digital Image Processing					25	25	50

#### Term Work :-

At least 7 experiments covering entire syllabus of ELXDLO8044 (Digital Image Processing) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Digital Image Processing need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	<b>TW/Practical</b>	Tutorial	Total
ELXL704	Project I	-	06		-	03		09
ELXL803	Project II		12			06		

### **Objectives:**

- 1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
- 2. To familiarize the process of problem solving in a group
- 3. To acquaint with the process of applying basic engineering fundamental in the domain of practical applications
- 4. To inculcate the process of research Outcomes

# **Outcome:**

Learner will be able to:

- 1. Do literature survey/industrial visit and identify the problem
- 2. Apply basic engineering fundamental in the domain of practical applications
- 3. Cultivate the habit of working in a team
- 4. Attempt a problem solution in a right approach
- 5. Correlate the theoretical and experimental/simulations results and draw the proper inferences
- 6. Prepare report as per the standard guidelines.

Students should do literature survey/visit industry/analyse current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by experimental/simulation methods. The solution is to be validated with proper justification and the report needs to be compiled in standard format.

### **Guidelines for Assessment of Project I**

Project I should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization
- d) Clarity of objective and scope
- e) Breadth and depth of literature survey

Project I should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

# **Guidelines for Assessment of Project II**

Project II should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization / Industrial trends
- d) Clarity of objective and scope
- e) Quality of work attempted
- f) Validation of results
- g) Quality of Written and Oral Presentation

Project Report has to be prepared strictly as per University of Mumbai report writing guidelines. Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai Students should be motivated to publish a paper in Conferences/students competitions based on the work